教育部「5G行動寬頻人才培育跨校教學聯盟計畫」 5G行動網路協定與核網技術聯盟中心

課程:5G系統層模擬技術

第八週:實體層萃取、鏈結層效應與Effective SINR

Outline

- 8.1 Link-to-System Interface
- 8.2 Effective SINR
 - Effective SINR Mapping(ESM)
 - Capacity ESM(CESM)
 - Exponential ESM(EESM)
 - Mutual Information ESM(MIESM)
- 8.3 EESM推導

Outline

- 8.1 Link-to-System Interface
- 8.2 Effective SINR
 - Effective SINR Mapping(ESM)
 - Capacity ESM(CESM)
 - Exponential ESM(EESM)
 - Mutual Information ESM(MIESM)
- 8.3 EESM推導

8.1 Link-to-System Interface

- Block error rate(BLER)並未被包含在系統層模擬中, 而是在實體層(Link-level)模擬,因此SLS在模擬實際傳 輸狀況前,需要向LLS取得BLER。
- SLS需要將數個資訊交給LLS,讓LLS去模擬出BLER
 ,包含:Effective SINR、Modulation Scheme、
 Coding Rate、Block Size...等。

Ref:[1] Z. Hanzaz and H. D. Schotten, "Analysis of effective SINR mapping models for MIMO OFDM in LTE system"

Fig. 2. Link-to-System interface mapping.

」之今正大學 Jational Chung Cheng University

Outline

- 8.1 Link-to-System Interface
- 8.2 Effective SINR
 - Effective SINR Mapping(ESM)
 - Capacity ESM(CESM)
 - Exponential ESM(EESM)
 - Mutual Information ESM(MIESM)
- 8.3 EESM推導

8.2 Effective SINR

- OFDM技術的運用,使得每個transport block中會有數 個subcarriers,每個subcarrier所在的頻率皆不同
- Multipath fading會導致在不同subcarrier所感受到的干 擾不同(frequency selective fading),因此,每個 subcarrier的SINR會不同
 - Different channel quality for different subcarrier

Ref:[1] Fig. 1. Effect of multipath fading on one transmitted block.

8.2 Effective SINR

- 由於,依據數個SINR值來決定一個transport block整體的BLER是十分的困難
 - ◆ 需要一個機制使數個SINR整合成一個SINR(Effective SINR)

Fig. 3. Mapping in EESM model.

Effective SINR Mapping(ESM)

- 以下將簡單列出數個ESM作法
 - Capacity ESM(CESM)
 - Exponential ESM(EESM)
 - Mutual Information ESM(MIESM)

CESM

 [1]This approach is based on the channel capacity measure and it is called the Capacity Effective SINR Mapping (CESM). The main formula to calculate the information measure based channel capacity is as follows:

$$I_{\gamma} = \log(1+\gamma)$$

The effective SINR value as follows:

先算出每個subcarrier 的capacity

$$SINR_{eff} = \beta * \left(2^{\left(\frac{1}{N}\sum_{k=1}^{N}\log_2\left(1 + \frac{SINR_k}{\beta}\right)\right)} - 1\right)$$

Exponential ESM

- [1]The EESM model, as its name refers, computes the information measure based on exponential function φ(SINR) = exp (-SINRs).
- The final derivation of the formula is as follows:

$$\operatorname{SINR}_{eff} = -\beta \ln \left(\frac{1}{N} \sum_{k=1}^{N} \exp \left(-\frac{SINR_k}{\beta} \right) \right)$$

Exponential ESM

- Assume the 2-state channel is characterized by an SNR vector **γ**=[γ1 γ2], where the two states γ1 and γ2 occur with probability p₁ and p₂ respectively
 - What's the expected BPSK (UB) BER Pb?

•
$$P_{b1} = e^{-\gamma 1}, P_{b2} = e^{-\gamma 2}$$

• $e^{-\gamma eff} = E[Pb] = p_1^* e^{-\gamma 1} + p_2^* e^{-\gamma 2}$

•
$$\gamma_{eff} = -\ln(p_1^* e^{-\gamma 1} + p_2^* e^{-\gamma 2})$$

Assume $p_1 = p_2 = 0.5$, $\gamma 1 = 0 dB (1)$, $\gamma 2 = 6 dB (4)$

- E[Pb] = 0.1931, γ_{eff} = 2.16dB (1.645)
- The generalized exponential ESM

$$\gamma_{eff} = -\beta \ln \left(\frac{1}{N} \sum_{i=1}^{N} e^{-\frac{\gamma_i}{\beta}} \right)$$

Reference: 3GPP R1-031303

詳細推導在8.3 EESM推導

國三甲正大學

Iational Chung Cheng University

MIESM

- The information measure is made based on the mutual information function $\varphi(SINR) = I(SINRk)$.
- The general formula as follows:

$$\operatorname{SINR}_{eff} = \beta . I^{-1} \left(\frac{1}{N} \sum_{k=1}^{N} I\left(\frac{SINR_k}{\beta} \right) \right)$$

$$I_{mp}(x) = m_p - E_y \left\{ \frac{1}{2^{mp}} \sum_{i=1}^{mp} \sum_{b=0}^{1} \sum_{z \in X_b^i} \log \frac{\sum_{\hat{x} \in X} \exp(A)}{\sum_{\hat{x} \in X_b^i} \exp(A)} \right\}$$

where $A = -|Y - \sqrt{x/\beta}(\tilde{x} - z)|^2$

Ref:[1]

• where, I_{mp} is the bits per symbol for the selected modulation scheme, X is the set of symbols, X_b^i is the set of symbols for which bit i equals b. Y is zero mean unit variance complex Gaussian variable.

Outline

- 8.1 Link-to-System Interface
- 8.2 Effective SINR
 - Effective SINR Mapping(ESM)
 - Capacity ESM(CESM)
 - Exponential ESM(EESM)
 - Mutual Information ESM(MIESM)
- 8.3 EESM推導

Gaussian (Normal) Distribution

 $\mathcal{N}(\mu, \sigma^2)$

- The Normal or Gaussian distribution, is an important family of continuous probability distributions
- The mean ("average", μ) and variance (standard deviation squared, σ^2) are the defining parameters
- The standard normal distribution is the normal distribution with zero mean (μ =0) and unity variance (σ^2 =1)
- Many measurements, from psychological to thermal noise can be approximated by the Gaussian distribution.

Gaussian RV

• A Gaussian RV, with mean value m, variance σ^2 , is denoted as $N(m, \sigma^2)$. Probability density function(pdf) is

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-m)^2}{2\sigma^2}}, x \in \mathbb{R}$$

- Also known as normal distribution.
- N(0,1): standard normal distribution, pdf and CDF are given respectively as:

$$f_X(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \quad F_X(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-\frac{x^2}{2}} dx$$

• Define function Q(x) as the tail integration of normal Gaussian:

$$Q(x) = \frac{1}{\sqrt{2\pi}} \int_{x}^{\infty} e^{-\frac{x^2}{2}} dx$$

• From definition of Q-function, we can see that

$$F_X(x) = 1 - Q(x) = Q(-x)$$

PDF of Gaussian Distribution

Additive white Gaussian noise and error

- Receive signal: y(t) = H(t)x(t) + n(t)
 - a random n(t) is called white process if it has a flat power spectral density (PSD)
 - The white process, from thermal noise, can be approximated as a Gaussian process
 The PSD is given by Sⁿ(f) = ^{ħf}/_{2(e^{ħf/kT} 1)} watts/Hz
 - The PSD is given by h=6.6e-34 Joules sec: Planck's constant k=1.38e-23 Joules/Kelvin: Boltzmann's constant T: temperature in Kelvin degree
 - N₀ [dBm/Hz]
 - = 10Log₁₀(1.38e-23 x 290[16.85°C] x 1e3[mW/W])
 - = -174 [dBm/Hz]
- BER is the ratio of erroneous bits to correct bits
- BER is an important measure of digital communication link
- BER depends on the signal and noise power (Signal to Noise Ratio)

 $\approx \frac{kT}{2}$ watts/Hz = $\frac{N_0}{2}$ watts/Hz

Maximum likelihood selection: the nearest neighbor

• y = x + n, $n \sim N(0, N_0/2)$

Error probability

Jational Chung Cheng University

Q function upper Chernoff bound

Generic Chernoff bound for a random variable X

$$\Pr\{X \ge a\} = \Pr\{e^{tX} \ge e^{ta}\} \le E[e^{tX-ta}] = e^{-ta}E[e^{tX}]$$

• Assume X ~ N(0,1)

$$E[e^{tX}] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{tu} e^{-\frac{u^2}{2}} du = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{(u-t)^2}{2} + \frac{t^2}{2}} du = e^{\frac{t^2}{2}}$$

• Let t = x in generic Chernoff bound inequality

$$Q(x) = P\{X > x\} \le e^{-tx} E[e^{tX}] = e^{-x^2} e^{\frac{x^2}{2}} = e^{-\frac{x^2}{2}}$$

$$Q(x) \le e^{-x^2/2}$$
 BPSK BER $P_b = Q(\sqrt{2SNR}) \le e^{-SNR}$

Iational Chung Cheng University

2

2

BPSK symbols on multiple subcarriers

- Bit length *L* block error rate of BPSK without coding/scrambling
 ◆ BLEP = 1 − (1 − P_b)^L
- How about different SNR values in each sub-carriers of OFDM ?
 - For each subcarrier \rightarrow costly input for link level simulation
 - If only 2 states \rightarrow (5 + 15) / 2 ?? (5dB + 15dB) /2 ??
- Basic principles of an Effective SINR Mapping (ESM)
 - From an instantaneous channel state, such as the instantaneous SINR for each sub-carrier in case of OFDM, to a corresponding block-error probability (BLEP)
 - Map the instantaneous channel state, e.g. the set of subcarrier SNRs {γ_k} in case of OFDM, into an instantaneous effective SNR γ_{eff} (a scalar value)
 - The effective SNR is then used to find an estimate of the block-error probability from basic AWGN link-level performance
 - $BLEP(\{\gamma_k\}) \approx BLEP(\gamma_{eff})$

Exponential ESM

- Assume the 2-state channel is characterized by an SNR vector **γ**=[γ1 γ2], where the two states γ1 and γ2 occur with probability p₁ and p₂ respectively
 - What's the expected BPSK (UB) BER Pb?

•
$$P_{b1} = e^{-\gamma 1}, P_{b2} = e^{-\gamma 2}$$

•
$$e^{-\gamma eff} = E[Pb] = p_1^* e^{-\gamma 1} + p_2^* e^{-\gamma 2}$$

•
$$\gamma_{eff} = -\ln(p_1^* e^{-\gamma 1} + p_2^* e^{-\gamma 2})$$

Assume $p_1 = p_2 = 0.5$, $\gamma 1 = 0 dB (1)$, $\gamma 2 = 6 dB (4)$

- ► E[Pb] = 0.1931, γ_{eff} = 2.16dB (1.645)
- The generalized exponential ESM

$$\gamma_{eff} = -\beta \ln \left(\frac{1}{N} \sum_{i=1}^{N} e^{-\frac{\gamma_i}{\beta}} \right)$$

. lational Chung Cheng University

Representation of Signals

High order modulation

Nearest neighbor detection

AWGN N(0,0.01) AWGN N(0,0.25)

EESM Derivation of high order modulation

- Basic idea is to find an equivalent SIR in the AWGN channel that results in the same BLER, using the Union-Chernoff bound to relate the error probability to the corresponding SIR in a channel/subchannel with an approximately constant channel response
- An adjustment factor (b) is necessary for QPSK and higher-order modulation schemes
- Less accurate in case of M-QAM, for M > 4
- The corresponding BLER performance can be found through table look-up from the pre-computed AWGN BLER performance for each modulation and coding combination.

Approximation of error probability

Table 1: Approximate symbol and bit error probabilities for coherent modulation

Ref: [2]http://www.unilim.fr/pages_perso/vahid/notes/ber_awgn.pdf

[1] Z. Hanzaz and H. D. Schotten, "Analysis of effective SINR mapping models for MIMO OFDM in LTE system," in Proc. 9th Int. Wireless Commun. Mobile Comput. Conf. (IWCMC), Sardinia, Italy, Jul. 2013, pp. 1509– 1515.

[2]http://www.unilim.fr/pages_perso/vahid/notes/ber_a wgn.pdf

