教育部「5G行動寬頻人才培育跨校教學聯盟計畫」 5G行動網路協定與核網技術聯盟中心

課程:5G系統層模擬技術 第四週:實驗一WiSE系統層模擬器安裝與測試

- 實驗目的
- 技術介紹
- 實驗方法與步驟
- 實驗紀錄與問題討論

實驗目的

- 了解SLS原理
- 安裝Wise GUI
- 成功執行WiSE GUI及出現結果

技術介紹(1/2)

- What is System Level Simulation (SLS)
 - System level simulators model the entire network, while link level simulations are used to model the link between the base and mobile stations. In order to predict the accurate performance of cellular network, a system level simulator, which includes the performance of the link between each base and mobile station, should be used, but this is computationally prohibitive. So to reduce the complexity caused by the system level simulato, PHY abstraction from the link level simulations to system level simulation can be used.

技術介紹(2/2)

• SLS with LLS

	Macro cell	Small cell
Layout	Hexagonal grid, 3 sectors per site, case 1 Both 19 Macro sites and 7 Macro sites can be used. Companies should indicate whether 19 or 7 sites are used when presenting the results.	Clusters uniformly random within macro geographical area; small cells uniformly random dropping within cluster area
System bandwidth per carrier	10MHz	10MHz
Carrier frequency	2.0GHz	2.0GHz
Carrier number	1	1
Total BS TX power (Ptotal per carrier)	46dBm	30 dBm, Optional: 24dBm, 37dBm
Distance-dependent path loss	ITU UMa[referring to Table B.1.2.1-1 in TR36.814], with 3D distance between an eNB and a UE applied. Working assumption is that 3D distance is also used for: break point distance	ITU Umi [referring to Table B.1.2.1-1 in TR36.814] with 3D distance between an eNB and a UE applied Working assumption is that 3D distance is also used for: break point distance
Penetration	For outdoor UEs:0dB For indoor UEs: 20dB+0.5din (din : independent uniform random value between [0, min(25,d)] for each link)	For outdoor UEs:0dB For indoor UEs: 20dB+0.5din (din : independent uniform random value between [0, min(25,UE-to-eNB distance)] for each link)
Shadowing	ITU UMa according to Table A.1-1 of 36.819 Working assumption is that 3D distance is used for shadowing correlation distance	ITU UMi[referring to Table B.1.2.1-4 in TR36.814] Working assumption is that 3D distance is used for shadowing correlation distance
Antenna pattern	3D, referring to TR36.819	2D Omni-directional is baseline; directional antenna is not precluded
Antenna Height:	25m	10m
UE antenna Height	1.5m	
Antenna gain + connector loss	17 dBi	5 dBi
Antenna gain of UE	0 dBi	
Fast fading channel between eNB and UE	ITU UMa according to Table A.1-1 of 36.819	ITU Umi
Antenna configuration	2Tx2Rx in DL, Cross-polarized	
Number of clusters/buildings per macro cell geographical area	1, 2, optional of 4	
Number of small cells per cluster	4, 10	
Number of small cells per Macro cell	[4,10]*Number of clusters per macro cell geographical area	
Number of UEs	60 UEs per macro cell geographical area are recommended when FTP model 3 is used	L Contraction of the second
UE dropping	Baseline: 2/3 UEs randomly and uniformly dropped within the clusters, 1/3 UEs rando indoor.	mly and uniformly dropped throughout the macro geographical area. 20% UEs are outdoor and 80% UEs are
Radius for small cell dropping in a cluster	50m	
Radius for UE dropping in a cluster	70m	
Minimum distance (2D distance)	Small cell-small cell: 20m Small cell-UE: 5m Macro –small cell cluster center: 105m Macro – UE: 35m Cluster center-cluster center: 2*Radius for small cell dropping in a cluster	
Traffic model	FTP1 or FTP3	
UE receiver	MMSE-IRC as baseline	
UE noise figure	9dB	
UE speed	3km/h	
Cell selection criteria	Baseline: RSRP for intra-frequency and RSRQ for inter-frequency, with cell common b	bias if CRE is applied.

實驗方法與步驟

完成程式安裝與執行 WiSE GUI

Wise GUI(1/14)

● WiSE GUI r15.0.0.1 setup.exe點開安裝即可

t੍₩WiSE GUI r15.0.0.1 setup.exe 2018/10/4 上午 0... 應用程式

- 安裝完後在對應的資料夾底下如右圖所示。
- 執行檔為WiSE_GUI.exe

	修改日期	類型	大小
Examples	2019/7/26 下午 0	檔案資料夾	
📙 Languages	2019/7/26 下午 0	檔案資料夾	
Link	2019/7/26 下午 0	檔案資料夾	
eee.txt	2019/7/29 下午 0	文字文件	4 KB
📧 hasp_rt.exe	2016/9/7 下午 02	應用程式	1,403 KB
🗟 hasp_windows_111410.dll	2017/10/31 下午	應用程式擴充	4,060 KB
🗟 hasp_windows_x64_111410.dll	2017/9/14 下午 0	應用程式擴充	4,577 KB
🗟 haspdnert.dll	2015/7/20 上午 1	應用程式擴充	589 KB
🗟 haspdnert_x64.dll	2015/7/20 上午 1	應用程式擴充	323 KB
💽 HASPUserSetup.exe	2017/7/14 下午 0	應用程式	19,354 KB
📓 haspvlib_111410.dll	2017/10/31 下午	應用程式擴充	732 KB
temporary	2018/10/3 下午 0	檔案	1 KB
unins000.dat	2019/7/26 下午 0	DAT 檔案	6 KB
📅 unins000.exe	2019/7/26 下午 0	應用程式	709 KB
💫 WiSE GUI r15.0.0.1 Manual.pdf	2018/10/4 上午 0	Adobe Acrobat	1,164 KB
III WiSE_GUI.exe	2018/10/4 上午 0	應用程式	649 KB

36,386 KB

● 打開後畫面如下圖

◆ 可在Language調整語言(Chinene中文、English英文)

Wise GUI(3/14)

● 打開WiSE GUI(WiSE_GUI.exe)然後選擇設定

. lational Chung Cheng University

Wise GUI(4/14)

● 從下拉式選單選擇一個模擬場景

🚪 WiSE GUI r15.0.0.1											-	X
檔案(F) + Language(L) +											10 G	
設定 批次執行 拓撲 結果	Ę										VVISE	
	~											
SE1_eMBB_InHConfigA_1	Π1	B付け□2	BKft⊓s	ß/ft⊓⊿	Bifthos	BKft⊓6	B/{th⊓7	Bift⊓s	言分日日			
SE2_mMTC_UMaConfigA SE3_URLLC_UMaConfigA		117/0462	TTT ALL	IN WHIT	нахно	117 MHV	H¥20H)	PI 7 /0HO	H/0 5 5			
SE4_URLLC_UMaConfigB SE5_eMBB_RMaConfigA												
SE6_eMBB_RMaConfigB												
SE7_mMTC_UMaConfigB SE8 eMBB_RMaConfigC												
ς								_				2
								儲	存 執行			
										10 -	4	1
									NOD	33	A K	た
						11						
										lational C	hung Che	na l

Iational Chung Cheng University

Wise GUI(5/14)

● 選擇完場景後(可在紅框內調整參數),然後點選執行

🖳 WiSE GUI r15.0.0.1										– 🗆 X
檔案(F) - Language(L)	•									. C
設定 批次執行 拓撲	結果			_						VViSE
SE1_eMBB_InHConfigA_1	~	∕ SelfI	Evaluation	eMBB_	InHConf	gA_1				
參數名稱	數值	附加1	附加2	附加3	附加4	附加5	附加6	附加7	附加8	說明 ^
Simulation Time	10									Simulation time (Frame)
SchedulingScheme	0									Round Robin = 0, Sub-band PF UL and DL = 4
Topology	5									TR36814_HexagonalMacroOnly = 0, TR38900_InH_Office = 4, TR38
InterNodeDistance	20									The distance between the nodes (meters)
UENumPerMacroCell	10									The number of the UEs of each macro cell
UEIndoorProbability	1									The probability that a UE is indoor
IndoorUEFloorDistribution	0									Fixed First Floor = 0, Uniform Floor = 1
MacroCellCarrierFrequency	400000									The center carrier frequency (Hz)
Bandwidth	100000									The channel bandwidth: 20e6, 40e6 (Hz)
SubCarrierSpacing	15000									SubCarrier spacing: 15k, 60k (Hz)
ChannelModel	0									ITU_R_InH_ModelA = 0, ITU_R_InH_ModelB = 1, ITU_R_UMa_M
UEPanelSelection	0									Single Panel = 0, Two Panels = 1
MacroCellTxAntConf	30									CellTx_2V = 1, CellTx_2X = 2, CellTx_4V = 3, CellTx_4X = 4, Cell1
MacroCellRxAntConf	1									CellRx_2V = 1, CellRx_2X = 2, CellRx_4V = 3, CellRx_4X = 4, CellF
UETxAntConf	4									UETx_1V = 0, UETx_2V = 1, UETx_2X = 2, UETx_4V = 3, UETx_4V
UERxAntConf	4									UERx_1V = 0, UERx_2V = 1, UERx_2X = 2, UERx_4V = 3, UERx_4V
MaxMacroTxPower	21									Node's transmit power (dBm)
MacroHeight	3									The height of Macro's antennas (meters)
MacroReceiverNoiseFigure	5									Noise figure of macro cell (dB)
UEReceiverNoiseFigure	7									Noise figure of UE (dB)
MaxUETxPowerdBm	23									Maximum transmission power of UE (dBm)
OutdoorUESpeed	0.8333									Speed at which the UEs move (meters/second): 0.8333 (m/s) = 3 (km/h
IndoorUESpeed	0.8333									Speed at which the UEs move (meters/second): 0.8333 (m/s) = 3 (km/h
MSOmniDirectionalflag	1									UE antenna pattern: Omni Directional = 1, Antenna Pattern= 0
<			· ·		1	1	1	1	1	
				-					儲存	執行

lational Chung Cheng University

Wise GUI(6/14)

2.點下存檔

● 將模擬的參數設置存檔

Wise GUI(7/14)

💀 WiSE GUI r15.0.0.1		- 🗆 X
檔案(F) ▼ Language(L) ▼		
設定 批次執行 拓撲 結果		VVISE
SE1_eMBB_InHConfigA C:\WiSE GUI\Link\WiSE.exe	-	
●		^
Simulation Time		
SchedulingScheme CNetwork		
Topology Version 15.2.4		= 4, TR38
InterNodeDistance GenerateNetworkTopology	OIK.	
UENumPerMacroCell GenerateUELocation		
UEIndoorProbability CWTIteDataIXI.CellLocation		
IndoorUEFloorDistributionerent en la la resca rena rame cers		
MacroCellCarrierFrequenITU_R InH_A Correlation Gaussian Grid (Carrier Frequency < 6 GHz)		
Bandwidth Correlation Gaussian Grid (0%)		
SubCarrierSpacing Correlation Gaussian Grid (70%)		
ChannelModel III. I. I. H. Model A. LSPs. Wran. Maps. (OK!)		R_UMa_M
UEPanelSelection SCM Generation & Assign Cell: 0%		
MacroCellTxAntConf		$\zeta = 4, \text{Cell}$
MacroCellRxAntConf		ζ = 4, CellF
UETxAntConf		3, UE Tx
UERxAntConf		3, UERx
MaxMacroTxPower		
MacroHeight		
MacroReceiverNoiseFigu		
UEReceiverNoiseFigure		
MaxUETxPowerdBm		
OutdoorUESpeed		() = 3 (km/h)
IndoorUESpeed	Speed at which the ODS move (meters/second): 0.0000 (m/s) = 3 (km/h
MSOmniDirectionalflag 1	UE antenna pattern: Omni Directional = 1, A	ntenna Pattern=0
		· • • • · · · · · · · · · · · · · · · ·
	To do day	
	儲存 執行	

· 國之中正大學 . lational Chung Cheng University

Wise GUI(8/14)

● 在WISE GUI選擇拓樸,然後點選所選目錄

lational Chung Cheng University

Wise GUI(9/14)

● 選擇執行結果後的資料夾(範例: Example_IndoorA1) 然後按下確定

🔛 WiSE GUI r15.0.0.1		- 🗆 🗙
檔案(E) + Language(<u>L</u>) + 設定 批次執行 拓撲 結果	瀏覽答料本 X	WISE
所選目錄	創設員科牧) Intel) PerfLogs) Program Files) Program Files) Program Files) SiLabs) TDM-GCC-64) Temp) Windows Vindo	Simulation information UE wideband information
Title	TTI -1 🗧 clear	
Χ	- +	匯出 繪製
Y		
	16	意子王大· lational Chung Cheng Li

Iational Chung Cheng University

Wise GUI(10/14)

點選檔案選擇(會自動選擇全部的檔案)

● 點選繪製

17

lational Chung Cheng University

國立 **P** E 大學

Wise GUI(11/14)

● 可點選任意UE來看它的資訊(右下圖所示)

lational Chung Cheng University

國立中正大學

Wise GUI(12/14)

點選結果,接著選擇所選目錄

📕 WiSE GUI r15.0.0.1		– 🗆 X
檔案(E) ▼ Language(L) ▼ 設定 批次執行 拓撰 結果	w.	SE
所選目錄		
檔案選擇		
	VVISE	
CDF ~		
□ 顯示負值		
Y	Title	
5% 50% 95% and Mean	匯出 繪製]
		之分
	10	
	l 🏾 🛛 🖉 🖊 Iational	Chuna

Iational Chung Cheng University

Wise GUI(13/14)

和拓樸一樣,選擇目錄資料夾(ex:Example_IndoorA1)
 點選確定,在點下檔案選擇(會自動全部打勾)會出現全

Wise GUI(14/14)

可調整範圍來看線圖(左圖紅框)或是 只點一個檔案來做圖(右圖)

國主华王大學

lational Chung Cheng University

實驗紀錄與問題討論

- 請說明SLS與LLS之間的關係 (10%)
- 請說明SLS系統的重要性 (10%)
- 完成安裝WiSE GUI (20%)
- 在WiSE GUI上執行(40%)
 - ◆ 有出現第14、18、21的畫面即為成功
- 請描述安裝與執行程式時所遭遇的困難與解法 (20%)

