實驗、射頻載波聚合開關模組實驗

一. 實驗目的

載波聚合(Carrier aggregation)技術是在 3GPP R10 版本中提出,該技術除了可以有效的增加使用者使用的頻寬外,更可提升頻譜使用的效率。本實驗乃利用常見之微波元件設計出可與寬頻射頻收發機整合之 寬頻高隔離度射頻切換模組,該模組可支援兩個分量載波(Component Carriers, CCs),並藉由設定不同的切換路徑實現頻帶內(Intra-band)和跨 頻帶(Inter-band)之載波聚合。

二.實驗原理

本實驗所提出之載波聚合開關模組包含功率分配器,射頻前置放大器,RF 開關和功率合成器等元件,如圖 1 所示。射頻前置放大器用於 補償訊號經過功率分配器後所產生的損耗,射頻開關和功率合成器用 來選擇適當的路徑以實現所需的載波聚合模式。

圖1、本實驗載波聚合開關模組方塊圖

在發射路徑上,頻帶內和跨頻帶的載波聚合操作模式可以透過控制 射頻開闢選擇相對應的路徑來獲得,如圖 3.2 和圖 3.3 所示。此模組位 於功率放大器之輸入端,相較於位於功率放大器輸出端之 T/R 射頻開闢 器所需之損耗與線性度要求較不嚴苛。

實驗1 單級毫米波頻率合成器實驗

一. 實驗目的

本實驗之目的在於學習並瞭解單級(single stage)毫米波頻率合成器 的電路架構,透過運用 Keysight 高頻模擬軟體 ADS 實際設計一個操作 頻段為 28 GHz 之單級毫米波頻率合成器。藉由 Keysight ADS 模擬所 設計之 28 GHz 單級毫米波頻率合成器的頻譜輸出、鎖入時間以及相位 雜訊,透過設計不同之頻率合成器迴路頻寬以及參考頻率以觀察頻率 合成器之鎖入時間以及相位雜訊之變化。

二.實驗設備

- 1. 個人電腦
- 2. Keysight ADS

三. 頻率合成器設計與模擬

1. 建立一個新的 Workspace(File->New->Workspace)

實驗2 倍頻毫米波頻率合成器實驗

一. 實驗目的

本實驗之目的在於學習並瞭解倍頻(frequency-muliplied)毫米波頻率合成器的電路架構,透過運用 Keysight 高頻模擬軟體 ADS 實際設計 一個操作頻段為 28 GHz 之倍頻毫米波頻率合成器。藉由 Keysight ADS 模擬所設計之 28 GHz 倍頻毫米波頻率合成器的頻譜輸出、鎖入時間以 及相位雜訊,透過設計不同之頻率合成器迴路頻寬以及參考頻率以觀 察頻率合成器之鎖入時間以及相位雜訊之變化。

二.實驗設備

- 1. 個人電腦
- 2. Keysight ADS

三. 頻率合成器設計與模擬

1. 建立一個新的 Workspace(File->New->Workspace)

實驗3 串級毫米波頻率合成器實驗

一. 實驗目的

本實驗之目的在於學習並瞭解串級(cascade)毫米波頻率合成器的 電路架構,透過運用 Keysight 高頻模擬軟體 ADS 實際設計一個操作頻 段為 28 GHz 之串級毫米波頻率合成器。藉由 Keysight ADS 模擬所設 計之 28 GHz 串級毫米波頻率合成器的頻譜輸出、鎖入時間以及相位雜 訊,透過設計不同之頻率合成器迴路頻寬以及參考頻率以觀察串級毫 米波頻率合成器之鎖入時間以及相位雜訊之變化。

二.實驗設備

- 1. 個人電腦
- 2. Keysight ADS

三. 頻率合成器設計與模擬

1. 建立一個新的 Workspace(File->New->Workspace)

寬頻收發關鍵技術模組-功率放大器預失真線性化實驗

黃建彰 元智大學電機系乙組

使用工具基本資訊

- •本實驗使用Matlab及Simulink作為平台。
- Nuand BladeRF x40 軟體定義無線電
- Celeritek Inc CMA-4-0504 功率放大器

實驗平台架設

- BladeRF 連接至電腦
- BladeRF TX端連接至PA之input端
- PA之output端連接一衰減器後接至BladeRF之 RX 端

主要流程會分為五步驟:

- 1. 產生調變訊號
- 2. 接收TX及RX訊號
- 3. 推導出功率放大器預失真係數
- 4. 創建DPD並應用到輸出訊號
- 5. 結果展示

BLADERF操作方法

BLADERF操作方法

BladeRF 創建輸出訊號

以下將介紹3種BLADERF輸出訊號如何產生,分別為Single Tone, AM, 16QAM

DPD操作流程

介紹完BLADERF如何使用及創造訊號後,要介紹如何使用Digital predistortion, DPD。

DPD主要分兩種,一種為**Lookup table,LUT,**另一種為**Memory polynomial**。

在實現Lookup table,LUT及Memory polynomial上,我分別做了模擬情況(Simulation)及實際情況(Measurement),用來交叉比對結果。

建議先看過以下幾份文件比較知道流程及運作方法。

https://www.mathworks.com/content/dam/mathworks/mathworks-dotcom/company/events/conferences/matlab-tour-china/2015/proceedings/matlab-rf-developmentapplication-in-numbers_en.pdf

https://ww2.mathworks.cn/videos/digital-predistortion-for-power-amplifiers-68727.html

https://ww2.mathworks.cn/matlabcentral/fileexchange/45890-adaptive-dpd-design

https://www.keysight.com/upload/cmc_upload/All/DigitalPreDistortion_MicroApps.pdf

DPD操作流程 (Simulation)

在Simulation上,做了五種情況,放置在不同資料夾中。分別為

資料夾名稱 情況

- DPD 測試Simulation 16QAM memory
- DPD2 測試I/Q memory
- DPD3 测試16QAM LUT
- DPD_2 測試12BIT 16QAM memory
- DPD_2 複製 測試16BIT 16QAM memory

使用的檔案順序皆在其資料夾底下的VP_UP_TEST3文件檔裡面,文件檔展示了流程及效果。 順帶一提,從Simulation可以發現,12BITS的DAC精準度不足以達到完美的預失真反函數,而16BITS 上則可以實現。

Measurements Part 1

**Part 1主要介紹如何開啟,讀寫以前BLADERF儲存在電腦 上的數值,並在MATLAB及SIMULINK作呈現。

DPD操作流程 (measurement)

首先選定一個PA·我們使用此PA做例子。

Specifications:

Model Number:

CMA-4-0504

Frequency Range: 0.5 GHz - 4 GHz Gain (min): 35 dB Gain Vs Temp at any Frequency: This Amplifier is not Temperature Compensated Noise Figure (max): 4 dB Output Power @ 1dB Compression: 18 dBm Gain Flatness Vs Frequency: +/-1.5 dB 3rd Order Intercept (Typ): 27 dBm Power Supply: Input Voltage: 11.5 to 15 VDC Current @ 12 VDC (typ): 240 mA Current @ 12 VDC (max): 265 mA Case Type (See attached Outline): SC4 Temperature Range: +25

Measurement (Memory Polynomial) Part 1

Measurement (LUT) Part 1

如要重新量測LUT[,]請參照PART2

Measurement (Memory Polynomial) Part 2

cd E:\Users\robert\Desktop\DPD_robert _4\20180222\19_-17_18_2 bladerf-cli -s Test2400m.txt

Measurement (Memory Polynomial) Part 2

**將資料寫入並處理

運行 牏

🖺 QAM code test.m

QAM code test.m 🗙 🕂 1 load time; 2 3 %AM original data in I/O mode 4 -QAMTEST=csvread('16QAM.csv'); 5 original=(QAMTEST./2048); б 7 -IW=original; 8 -IW(:, 2) = [];9 -QW=original; 10 -QW(:, 1) = [];11 original2=IW+1j.*OW; 12 13 -WW = repmat(original2,[1 1 length(tout)]); 14 data original.time=tout; 15 data_original.signals.values = WW; 16 data original.signals.dimensions=[5068 1]; 17 18 -WWW = repmat(original,[1 1 length(tout)]); 19 data_original2.time=tout; 20 data_original2.signals.values = WWW; 21 data_original2.signals.dimensions=[5068 2]; 22 23 %AM without PA data in I/Q mode 24 -QAM_return=csvread('16QAM_return.csv'); 25 withoutPA=(QAM return./2048); 26

- 27 IX=withoutPA;
- 28 IX(:, 2) = [];

**推導出預失真係數

慉 DPD_analysis.m

運行

續卜負

	5	D	PPD.m 🗶 +
	11		
	12	-	<pre>pipe(1:end-1) = pipe(2:end);</pre>
	13	-	pipe(end) = up(n);
	14		
	15	-	for $k = 1:K$
	16	-	for $m = 1:M$
	17	-	$y(n) = y(n) + coef_pd((k-1)*M+m)*pipe(m)*abs(pipe(m))^{(k-1)};$
	18	-	- end
	19	-	- end
	20		
	21		
	22	-	end
	23		
	24		%AM data withDPD
	25	-	<pre>yy= repmat(y,[1 1 length(tout)]);</pre>
	26	-	data_withDPD.time=tout;
	27	-	data_withDPD.signals.values = yy;
	28	-	data_withDPD.signals.dimensions=[30097 1];
:	29		
	30	-	IIX=real(y);
	31	-	QQX=imag(y);
	32	-	pa_in_DPD=complex(zeros(30097,2));
	33	-	pa_in_DPD(:,1) = [IIX];
	34	-	pa_in_DPD(:,2) = [QQX];
	35		
	36	-	pa_in_DPD2=round(pa_in_DPD.*2048)
	37	-	csvwrite('pa_in_DPD2.csv',pa_in_DPD2);

E:

cd E:\Users\robert\Desktop\DPD_robert _4\20180222\19_-17_18_2 bladerf-cli -s Test2400m_DPD_FORPA.txt

An Took Van Sendeton Halp Ch 20 C 4 ~ 5 2 2 2 2 2 2 2 2

Measurement (LUT) Part 2

1	CMD.bat - 記事本					
)	檔案(F) 編輯(E) 格式(O) 檢視(V) 說明(H)					
	E: cd E:\Users\robert\Desktop\DPD_robert _4\20180322\1917_18_2					

bladerf-cli -s Test2400m.txt

運行 🎦 QAM_code_test.m	QAM_code_test.m 🗶 🕂	
	1 -	load time;
	2 -	load PA_IN_OUT;
	3	
	4	%AM original data in I/Q mode
	5 -	QAMTEST=csvread('16QAM.csv');
	6 -	original=(QAMTEST./2048);
	7 -	original_08=round(QAMTEST. <mark>*0.7)</mark> ;
	8 -	csvwrite('16QAM_08.csv',original_08);
**修改IQ的振幅,使增益保持線性,	9	
並重新出成 CSV 檔案格式	10	
	11	
	12	
	13 -	IW=original;
	14 —	IW(:, 2) = [];
	15 —	QW=original;
	16 —	QW(:, 1) = [];
	17 -	original2=IW+1j.*QW;
	18	
	19 —	<pre>WW = repmat(original2,[1 1 length(tout)]);</pre>
	20 -	data_original.time=tout;
	21 —	data_original.signals.values = WW;
	22 -	data_original.signals.dimensions=[5068-1];
	23	
	24 -	<pre>WWW = repmat(original,[1 1 length(tout)]);</pre>
	25 -	data_original2.time=tout;
AL AF	26 -	data_original2.signals.values = WWW;
教育部5G行動寬頻人才培育計畫	27 -	data_original2.signals.dimensions=[5068-2];
5G天線與射頻技術聯盟中心	28	

cd E:\Users\robert\Desktop\DPD_robert _4\20180322\19_-17_18_2 bladerf-cli -s Test2400m_08.txt

注意事項

- 以上所使用檔案之檔案路徑為此次示範所使用, 請依實際檔案位置更改路徑。
- 請確實於RX端接上衰減器。如未接上衰減器RX 端可能有損壞的風險(此款BladeRF所使用之RF 傳收機RX最大接收功率為23dBm)

