System Level Simulations with WiSE

Wen-Rong Wu

Institute of Communication Engineering National Chiao Tung University Hsinchu, Taiwan 2021/01/29

Content

I. Introduction to 5G

II. Introduction to WiSE

- 1. Introduction
- 2.5G SCM channel model
- 3. Scheduler and HARQ
- 4. Codebook and CSI feedback
- 5. EESM and MIESM
- III. Experiments with WiSE

I. Introduction to 5G

 Wireless communication has experienced a rapid growth and evolution since 1980s (1G, ...4G, or now 5G).

Evolution:

Data rate enhancement:

 In just 30 years, wireless data rate has been increased by more than 100,000 times!

- What is 5G?
 - 5G is the fifth generation technology, and it has many advanced features potential enough to change our life dramatically.
- Targets:

https://5g-ppp.eu/#

- Features:
 - High increased peak bit rate
 - Larger data volume per unit area
 - High capacity
 - Lower battery consumption
 - Better connectivity irrespective of the geographic region
 - Larger number of supporting devices
 - Lower cost of infrastructural development
 - Higher reliability of the communications
- How to increase the capacity by 1000 times?

- Better spectral efficiency (4):
 - Spectral efficiency: 30 bps/Hz \rightarrow ?
 - Key enabling technology, MIMO, ...
- Larger spectrum (5):
 - Carrier bandwidth Increase: 100MHz →500MHz/1GHz
 - Spectrum availability?
 - Higher band: millimeter wave (mmWave)
 - Spectrum sharing
 - Unlicensed bands
- More cells, network densification (50):
 - Greatly reduce the coverage of a cell, i.e., dramatically increase the cell number.
 - Key enabling technology: ultra-dense small cells

- Technology challenges:
 - Authorized shared access
 - Unlicensed bands
 - mmWave
 - Massive MIMO
 - Phase antenna array
 - Beam-forming and beam-tracking
 - Small cell
 - Interference management
 - Full duplex radios
 - SDN and NFV

— ...

- ITU has defined three usage scenarios in 5G
 - Enhanced mobile broadband
 - Massive machine type communications
 - Ultra-reliable and low latency communications
- Key features:

Three scenarios:

II. Introduction to WiSE 1. Introduction

- The 3rd generation partnership project (3GPP) is an umbrella term for a number of standards organizations which develop protocols for mobile telecommunications.
 - GSM and related 2G and 2.5G standards, including GPRS and EDGE
 - UMTS and related 3G standards, including HSPA and HSPA+
 - LTE and related 4G standards, including LTE Advanced and LTE Advanced Pro
 - 5G NR and related 5G standards
- 3GPP is a partnership project formed by the standards bodies ETSI, ARIB, TTC, TTA, CCSA, and ATIS.
- The project was established in December 1998 with the goal of developing a specification for a 3G mobile phone system based on the 2G GSM system.

Project architecture:

IMT development:

(*) Deployment timing may vary across countries.

IMT-2000: 3G IMT-Advanced: 4G IMT-2020: 5G issued by the ITU Radio communication Sector (ITU-R) of the International Telecommunication Union (ITU)

- Key features of LTE:
 - Multiple access scheme
 - Downlink: orthogonal frequency division multiple access (OFDMA)
 - Uplink: single carrier FDMA (SC-FDMA)
 - Adaptive modulation and coding
 - DL modulations: QPSK, 16QAM, and 64QAM
 - UL modulations: QPSK and 16QAM
 - Bandwidth scalability for efficient operation in differently sized allocated spectrum bands
 - Multiple antenna (MIMO) technology for enhanced data rate and performance
 - Support for both FDD and TDD
 - Channel dependent scheduling & link adaptation for enhanced performance

Frame structure:

- LTE frames are 10 ms in duration.
- They are divided into 10 subframes, each subframe being 1.0 ms long.
- Each subframe is further divided into two slots, each of 0.5 ms duration.
- Slots consist of either 6 or 7 OFDM symbols, depending on whether the normal or extended cyclic prefix is employed.

Frame structure:

Available Downlink Bandwidth is Divided into Physical Resource Blocks (RBs)

DL frame structure:

UL frame structure:

 LTE protocol architecture (DL): From upper layer: service data unit (SDU) To lower layer: protocol data unit (PDU)

• WiSE SLS architecture:

WiSE functional blocks:

- RLC layer
 - Traffic model
 - FTP model
 - Full buffer model
 - VoIP model
- MAC layer
 - Scheduler
 - HARQ process
- PHY layer
 - SINR calculator
 - PHY abstraction

IRC: interference rejection combing

- System level simulator (SLS) is designed to simulate the communication performance between a large number of BSs and UEs (cellular systems).
- Traffic models, scheduling algorithms, CSI feedbacks and interference managements etc. are all considered in SLS.

Performance metrics:

- System throughput
 - Average data rate
 - Cell average packet throughput
 - UE average packet throughput
- Spectrum efficiency
 - Cell spectrum efficiency
 - Cell edge user spectrum efficiency
- Avg. packet retransmission number
- Packet drop rate
- Packet transmission latency
- Fairness metric

- Those metrics can be used to
 - evaluate system performance,
 - conduct calibrations, and
 - check if systems satisfy specification requirements.

WiSE program flow:

Run time simulation

WiSE program flow:

Run time simulation

Network topology generator

- 3GPP setting:
 - InH: 12 gNB
 - UMa: 19 gNB, ISD:200m or 500m
 - RMa: 19 gNB, ISD:1732m or 6000m
- User setting:
 - Users can flexibly adjust the position of gNB

InH: indoor hotspot UMa: urban macro UMi: urban micro • A common cellar topology:

WiSE program flow:

Run time simulation

- WiSE channel model:
 - InH Model A , Model B
 - UMa Model A , Model B
 - UMi Model A , Model B
 - RMa Model A , MoelB
- Channel model selection:
 - TR 38.802 Table A.2.1-11

InH: indoor hotspot UMa: urban macro UMi: urban micro

Model A	0.5GHz <f<6ghz< th=""></f<6ghz<>	
	6GHz <f<100ghz< td=""></f<100ghz<>	
Model B	0.5GHz <f<100ghz< td=""></f<100ghz<>	

Parameter	Dense Urban	Urban Macro	Indoor Hotspot
channel parameters	Below 6GHz: - Macro-to-UE: 3D UMa - Micro-to-UE: 3D UMi - Macro-to-Macro: 3D UMa (h_UE= - Macro-to-Micro: 3D UMa (h_UE= - Micro-to-Micro: 3D UMi (h_UE=1) - UE-to-UE: A.2.1.2 in TR36.843(* follows Table A.2.1-13 Above 6GHz: - Macro-to-UE: 5GCM UMa - Micro-to-UE: UMi-Street canyon - Macro-to-Micro: 5GCM UMa (h_U - Micro-to-Micro: 5GCM UMa (h_U - Micro-to-Micro: UMi-Street canyon - UE-to-UE: UMi-Street canyon (h_U) - UE-to-UE: UMI-Street c	=25m) :10m) 0m) **), penetration loss between UEs UE=25m) JE=10m) on (h_UE=10m) _BS=1.5m ~ 22.5m), penetration .2.1-12	Below 6GHz: - TRP-to-UE: ITU InH - TRP-to-TRP: ITU InH (h_UE=3m) - UE-to-UE: A.2.1.2 in TR36.843 Above 6GHz: - TRP-to-UE: 5GCM Indoor-office - TRP-to-TRP: 5GCM Indoor-office (h_UE=3m) - UE-to-UE: 5GCM Indoor-office (h_BS=1.5m)

Channel generation

TR 38.901 Figure 7.5-1 Channel coefficient generation procedure

Packet generation

Run time simulation

Traffic model (packet generation):

Scheduling

Run time simulation

• Scheduler:

CSI feedback

Run time simulation

CSI feedback in FDD and TDD:

SRS: sounding reference signal

SINR evaluation

Run time simulation

Interference:

BLER calculation

Run time simulation

PHY layer abstraction:

Throughput, Packet error rate, etc.

② Exponential Effective SINR Mapping (EESM)

⑦ Mutual Information Effective SINR Mapping (MIESM)

II. Introduction to WiSE2. 5G SCM channel model

- Channel: ground radio waves generally propagate according to three mechanisms:
 - Reflection
 - Diffraction
 - Scattering
- The transmitted radio signal is not only susceptible to noise and interference (in additive manner), but also distorted by the propagation channel.
- "Fading" is used to describe the variations in received power with time caused by changes of the propagation channel.
 - Large-scale fading
 - Small-scale fading

- Large-scale fading:
 - The variation in received signal power over relatively large distances due to path loss and shadowing
 - "Path loss" is the reduction in power (attenuation) of an electromagnetic wave as it propagates through space.
 - "Shadowing" is the attenuation of an electromagnetic radio signal by obstacles.
- Small-scale fading:
 - The variation in received signal power occurs over very short distances (on the order of the signal wavelength)
 - e.g., $f_c = 1$ GHz, $\lambda = 3 \times 10^8$ (m/s) / $10^9 = 0.3$ m

Channel model:

 P_r

• Free space model:

$$\boldsymbol{d} = \frac{\boldsymbol{P}_{t}\boldsymbol{G}_{t}\boldsymbol{G}_{r}\lambda^{2}}{\left(4\pi\boldsymbol{d}\right)^{2}} \propto \frac{1}{\boldsymbol{d}^{2}}, \frac{1}{\boldsymbol{f}^{2}}, \lambda^{2}.$$

- 3D channel model:
 - Spatial channel model for multiple-input-multiple-output

Ζ

- Cluster based

SCM

Ζ

• 5G channel model:

ITU-R M.2412 Table A1-1

The mapping of channel models to the test environments

Test environment	Indoor Hotspot – eMBB	Dense urban – eMBB	Rural – eMBB	Urban macro - mMTC	Urban macro - URLLC
Channel model	InH_A, InH_B	Macro layer: UMa_A, UMa_B Micro layer: UMi_A, UMi_B	RMa_A, RMa_B	UMa_A, UMa_B	UMa_A, UMa_B

InH: indoor hotspot UMa: urban macro UMi: urban micro • 3D channel generation procedure:

Scenario/network layout:

(BS mounted on the ceiling

- Antenna parameters:
- * Different panels can be put in different locations, facing different directions.
- M: the number of rows per polarization per panel
- N: the number of columns per polarization per panel
- M_{TXRU} (M_p) : the number of TXRU per column per polarization per panel
- N_{TXRU} (N_p) : the number of TXRU per row per polarization per panel
- Polarization flag: 0: V-polarization, 1: X-polarization
- K: the number of virtualization weight per columns for each TXRU
- L: the number of virtualization weight per rows for each TXRU
- d_H: horizontal antenna element spacing
- d_V: vertical antenna element spacing
- Mg, Ng: number of panels in row and column

* V (vertical) polarization : no polarization

- Channel parameters:
 - Large-scale parameters
 - DS rms Delay Spread
 - ASD rms Azimuth Spread of Departure
 - ASA rms Azimuth Spread of Arrival 2
 - ZSD rms Zenith Spread of Departure
 - ZSA rms Zenith Spread of Arrival
 - SF shadow fading
 - K Ricean K-factor
 - Small-scale parameters
 - Delay, power, AOA, AOD, ZOA, ZOD

II. Introduction to WiSE3. Scheduler and HARQ

• 5G NR frame, subframe, and slot:

Supported transmission numerologies

-	μø	$\Delta f = 2^{\mu} \cdot 15 [\text{kHz}]_{\text{e}}$	Cyclic prefix₀
	0*	15⊷	Normal _*
	ı 1∉	30 ∉	Normal _*
	- 2∻	60 <i>⊷</i>	Normal, Extended.
	• 3 _€	120 ₆	Normal⊬
	4.₀	240₽	Normal _e

Number of OFDM symbols per slot, slots per frame, and slots per subframe for normal cyclic prefix.

 μ_φ 	$N^{ m slot}_{ m symb}$,	$N_{ ext{slot}}^{ ext{frame},\mu}$	$N_{ m slot}^{ m subframe,\mu}$
■ 0 ₄ :	14₽	10 _*	1 _°
■ 1.	14↩	20*	20
■ 24	14₽	40 ₽	4 ₽
 3₄¹ 	14₄	80,,	8₊∍
■ 4.ª	14₽	160⊷	16⊷

Example:

Example for $\mu = 0$ and $\mu = 1$ **1 Frame = 10ms**

* Subcarrier spacing is higher, bandwidth is higher and sampling rate is higher.

Occupied bandwidth:

- In WiSE:
 - Scheduling unit: subband

* Subband partition is different for different μ .

Example for $\mu = 0$ (15*kHz*); *Bandwidth* = 10*MHz*

 P_{CMAX} : UE configured maximum output power

 $P_{\rm O}$: target received power

 $M_{\rm \tiny RB}$: number of resource blocks for UL transmission

 α : pathloss compensation factor

PL : pathloss between the UE and its serving base station

- Round robin (RR) scheduling:
 - RR scheduling uses equal bandwidth for all UEs without accounting priority and channel condition.
 - RR scheduling is simple, easy to implement, and starvation free.
 - In WiSE, each UE obtains a whole OFDM symbol for transmission periodically.

Time Domain

- Proportional fairness (PF) scheduling:
 - PF tries to balance QoS and total throughput for each UE.
 - Schedule the channel for the UE having the highest priority function, P.

$$P=rac{T^lpha}{R^eta}$$

- *T* denotes the data rate potentially achievable for the station in the present time slot.
- *R* is the historical average data rate of this station.
- α and β tune the "fairness" of the scheduler.

Time Domain

Subband based:

First-in-first-out (FIFO) scheduling:

- ARQ (automatic repeat request) / hybrid ARQ (HARQ) :
 - The ARQ functionality provides error correction by retransmissions in acknowledged mode at Layer 2.
 - The HARQ functionality ensures delivery between peer entities at Layer 1.

- HARQ with soft combining provides robustness against transmission errors
- HARQ protocol is part of the MAC layer, while the actual soft combining is handled by the physical layer

- Two types of HARQ combining:
 - Chase combining (CC)
 - Combine information of multiple codewords
 - Incremental redundancy (IR):
 - Combing information of multiple partial codewords

Types of HARQ:

Go-back-N

Stop-and-wait

Selective-repeat

II. Introduction to WiSE 4. Codebook and CSI feedback

- Channel state information (CSI):
 - An indicator shows how good or bad the channel is at a specific time.
- Precoding:
 - For MIMO systems, transmitting signal vectors can be multiplied by a matrix to optimize the performance.

$$\mathbf{y}_{M \times 1} = \mathbf{H}_{M \times N} \mathbf{x}_{N \times 1} + \mathbf{v} \Rightarrow \mathbf{y} = \mathbf{H} \mathbf{W} \mathbf{x} + \mathbf{v}$$

- CSIs:
 - Rank indicator (RI)
 - Precoding matrix index (PMI)

Channel quality indicator (CQI)

Precoder

* If **H** is full rank, min(*M*,*N*) layers signals can be transmitted

- NR supports three types of CSI reporting:
 - Aperiodic CSI reporting
 - Delivered when explicitly requested by the network by means of the channel-state request flag included in uplink scheduling grants.
 - Periodic CSI reporting
 - It can be configured by higher layer. higher-layer configuration includes at least reporting periodicity and timing offset.
 - Semi-persistent CSI reporting
 - Configuration of CSI reporting can be activated or de-activated.

Periodic and aperiodic:

- The period for CSI reporting (5G NR) is 5ms.
 - CSI feedback delay is 6ms, meaning that the estimation is used after 6ms.
- Difference in TDD and FDD:
 - In TDD, UL and DL frames are not ideally allocated such that longer CSI delay will be resulted.
 - No problem with FDD.

Uplink-	Downlink-to-Uplink Switch-point periodicity	Subframe number									
downlink configuration		0	1	2	3	4	5	6	7	8	9
0	5 ms	D	S	U	U	U	D	S	U	U	U
1	5 ms	D	S	U	U	D	D	S	U	U	D
2	5 ms	D	S	U	D	D	D	S	U	D	D
3	10 ms	D	S	U	U	U	D	D	D	D	D
4	10 ms	D	S	U	U	D	D	D	D	D	D
5	10 ms	D	S	U	D	D	D	D	D	D	D
6	5 ms	D	S	U	U	U	D	S	U	U	D

S: special subframe for DL and UL switch DwPTS: DL pilot time slot GP: guard period UpPTS: UL pilot time slot

- WiSE periodic feedback:
 - CSI feedback delay = 6
 - CSI periodicity =5

TRP: transmission receiption point

- RI, providing a recommendation on the number of layers that should preferably be used for downlink transmission to the terminal.
- RI only needs to be reported when configured to be in one of the spatial-multiplexing transmission modes.
- RI estimation
 - Using the different number of the transmission rank (layer) cause the different capacities
 - The higher number of the transmission rank (layer) is, the larger inter-layer interference is.
- The capacity of a MIMO channel can be written as

$$C = \log_2 \left\{ \det \left[\mathbf{I}_n + \mathrm{SINR}(\mathbf{H}\mathbf{H}^H) \right] \right\}$$

 WiSE SLS estimates the capacity of different RI and chooses the best capacity's RI for transmission. How many signal streams can be sent for a MIMO channel?

 $\max(RI) = \min(N_r, N_r)$

If RI< min(N_p,N_r), it means that at least two antennas are fully correlated.

- Capacity for the ith stream:
- * Conduct MMSE equalization first
- * Treat each layer independently* Equal power allocation

$$C_i^{MMSE} = \log_2\left(\frac{1}{\left[(\mathbf{I}_r + \text{SINR}_r \mathbf{H}_r^H \mathbf{H}_r)^{-1}\right]_{i,i}}\right)$$

RI estimation:

 $\mathbf{H}_{b} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{H}$

 $n \times m$ $n \times m$ $m \times m$

$$\begin{aligned} \mathbf{H}_{b} \to SVD \to \mathbf{V}_{b} \\ \mathbf{H}_{eq(r,b)} &= \mathbf{H}_{b} \mathbf{V}_{b,r} , r = 1, \dots, \text{max rank} \\ C_{r,b} &= \log_{2} \left(\frac{1}{\left[\left(\mathbf{I}_{r} + \text{SINR}_{r} \mathbf{H}_{eq(r,b)}^{\text{H}} \mathbf{H}_{eq(r,b)} \right)^{-1} \right]_{i,i}} \right) \\ C_{r} &= \sum_{b} C_{r,b} \\ \begin{bmatrix} \hat{R} \end{bmatrix} &= \arg\max_{r} C_{r} \end{aligned}$$

 $\begin{cases} b: \text{subband index} \\ \mathbf{H}_b: \text{Average channel in subband } b \\ \mathbf{H}_{eq(r,b)}: \text{equivalent channel of channel } \mathbf{H}_b \text{ with precoder } \mathbf{V}_{b,r} \\ \text{SINR}_r: \text{ Wideband SINR in Rank } r \\ C_{r,b}: \text{subband MMSE capacity of equivalent channel } \mathbf{H}_{eq(r,b)} \\ C_r: \text{ wideband MMSE capacity} \\ \hat{R}: \text{decision of RI} \end{cases}$