5G基頻傳收機實作 Implementation for the 5G Baseband Transceiver 上課教材

劉宗憲 中正大學通訊工程學系

Outline

- Part I: Fundamentals for the Baseband Transceiver
- Part II : CORDIC Rotation and Its Application
 - Fundamentals of CORDIC Rotation
 - QR-Decomposition of Matrices
 - > QR-Decomposition of Matrices for STBC MIMO System
- Part III : Precoding Techniques
 - Precoding Fundamentals
 - Compressed Beamforming Weight Precoding
 - Codebook Based Precoding
- Part IV : Angle of Arrival Estimation
 - Methods for Angle of Arrival Estimation
 - Antenna Calibration

Part I : Fundamentals for the Baseband Transceiver

MIMO-OFDM Transmitter

Baseband and Radio Frequency Band Transmitter

The MIMO Techniques (1/4)

- The symbol stream is converted in parallel to multiple streams (layers) and then to multiple antennas for transmission.
 - N_s : number of spatial streams (layers) N_t : number of antennas

- Spatial Division Multiplexing (SDM)
- Space-Time Block Coding
- Precoding

Spatial Division Multiplexing (SDM) MIMO Technique $(N_t = N_s)$

Space Time Block Coding (STBC) MIMO Technique $(N_t > N_s)$

Precoded MIMO Technique $(N_t > N_s)$

Single Carrier Communication System

Multi-Carrier Communication System (1/2)

11

Multi-Carrier Communication System (2/2)

12

• If the $f_k, \forall k$, are far apart, the spectrum of the transmitted signal looks as follows.

• The carrier frequencies f_k , $\forall k$, are selected to avoid spectrum overlapping such that modulated signals associated with all carriers do not interfere with one another.

• However, if the carrier frequencies satisfy $f_k = f_0 + k\Delta f$, $k = 0, \dots, N-1$ where f_0 and $\Delta f = \frac{1}{T}$ are fixed values, the spectrum looks like

The spectrum of all multiple carrier modulated signals

The spectra of all multiple sub-signals are overlapped. It appears that the multiple sub-signals may interfere with one another. However, the frequency components at frequency instants $f_k = f_0 + k\Delta, \forall k$,

do not interfere with one another.

Through precise frequency synchronization, the receiver can obtain through

accurate sampling the frequency components at these frequency instants.

Hence, transmitting signal by this scheme requires accurate frequency synchronization.^{mm}

The OFDM System (2/5)

- The OFDM System (3/5)
- The OFDM system is a structure of Orthogonal FDM of N parallel signal streams.
 - Advantages of the OFDM system over the multi-carrier (MC)-system:
 - High spectral efficiency (two-fold)
 - Low-complexity (1-tapped) channel equalization
 - Only one RF chain (one mixer/power amplifier, one high-speed DAC)
 - Cheap and stable digital FFT to implement the Orthogonal FDM

One OFDM symbol may include:

N symbols (data in frequency domain)

N samples (IFFT size in both time and frequency domains)

N + P samples (IFFT size plus CP length in time domain)

CCU Comm

Smart Antenna Lab

The OFDM System (5/5)

Sub-carrier k (frequency))

OFDM symbol (time)

2

3

...

1

Orthogonal Frequency Division Multiple Access (OFDMA)

Each user is allocated with a fixed number of sub-carriers

MIMO-OFDM Receiver

Bandpass Signal and Its Lowpass Representation

$$x_c(t) = A_c \operatorname{Re}\left\{x(t)\right\} \cos(2\pi f_c t) + A_c \operatorname{Im}\left\{x(t)\right\} \sin(2\pi f_c t)$$

The MIMO System

MIMO-OFDM System

The received baseband signal at sub-carrier k is $\mathbf{x}_{k} = \mathbf{H}_{k}\mathbf{P}_{k}\mathbf{s}_{k} + \mathbf{w}_{k}$

where

- \mathbf{x}_k of size $N_r \times 1$ is the received signal
- \mathbf{H}_k of size $N_r \times N_t$ is the channel matrix
- \mathbf{P}_k of size $N_t \times N_s$ is related to the different MIMO techniques
- \mathbf{s}_k of size $N_s \times 1$ is the transmitted symbols at all layers
- \mathbf{w}_k of size $N_r \times 1$ is the additive white Gaussian noise

Maximum Likelihood Detection

The MLD of \mathbf{s}_k , $\forall k$, is expressed as

$$\hat{\mathbf{s}}_k = \arg \min_{\mathbf{s}_k \in C^{N_a}} \|\mathbf{x}_k - \mathbf{H}_k \mathbf{P}_k \mathbf{s}_k\|^2$$

where

C denotes the set of symbol constellations.

For the SDM MIMO transmission, $\mathbf{P}_k = \mathbf{I}_k$. If $\mathbf{H}_k = \mathbf{Q}_k \mathbf{R}_k$ and $\mathbf{y}_k = \mathbf{Q}_k \mathbf{x}_k$ is available, the MLD becomes

$$\hat{\mathbf{s}}_k = \arg \min_{\mathbf{s}_k \in C^{N_a}} \|\mathbf{y}_k - \mathbf{R}_k \mathbf{s}_k\|^2.$$

Computationally efficient tree search schemes can be applied to obtain $\hat{\mathbf{s}}_k$.

Hybrid Precoding for Milli-Meter Wave Communications

Part II : CORDIC Rotation and Its Application

- Fundamentals of CORDIC rotation
- > QR-Decomposition of Matrices
- QR-Decomposition of Matrices for STBC MIMO System

The Givens Rotation

The Givens rotation is used to rotate a real-valued 2-by-1vector

$$\begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix}$$

or a complex-valued a + jb.

CORDIC Algorithm (1/4)

$$\begin{bmatrix} a'\\b' \end{bmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} a\\b \end{bmatrix}$$
$$= \prod_{i} \begin{bmatrix} \cos\theta_{i} & -\sin\theta_{i}\\ \sin\theta_{i} & \cos\theta_{i} \end{bmatrix} \begin{bmatrix} a\\b \end{bmatrix}, \quad \theta = \sum_{i} \theta_{i}$$
$$= \left\{ \prod_{i} \cos\theta_{i} \right\} \prod_{i} \begin{bmatrix} 1 & -\tan\theta_{i}\\ \tan\theta_{i} & 1 \end{bmatrix} \begin{bmatrix} a\\b \end{bmatrix}, \quad \not{E} \, \text{lices} \, \theta_{i} \quad , \quad \not{S} \, \tan\theta_{i} = \pm 2^{-i}$$
$$\approx \left\{ \prod_{i} \cos(\tan^{-1}2^{-i}) \right\} \prod_{i} \begin{bmatrix} 1 & -\sigma_{i}2^{-i}\\ \sigma_{i}2^{-i} & 1 \end{bmatrix} \begin{bmatrix} a\\b \end{bmatrix}, \quad \sigma_{i} = \pm 1$$
$$= K_{n} \cdot \prod_{i} \begin{bmatrix} 1 & -\sigma_{i}2^{-i}\\ \sigma_{i}2^{-i} & 1 \end{bmatrix} \begin{bmatrix} a\\b \end{bmatrix}, \quad i \text{ if } \mathcal{H} \text{$$

 $\theta = \sum_{i} (\sigma_{i} \theta_{i}) = \pm 45^{\circ} \pm 26.56^{\circ} \pm 14.04^{\circ} \pm 7.13^{\circ} \pm 3.58^{\circ} \pm 1.79^{\circ} \pm \cdots$

CORDIC Algorithm (2/4)

The rotation is decomposed into micro-rotations

$$\theta_i = \tan^{-1}(2^{-i}), \ i = 0, 1, 2, \cdots$$

In practice, only a finite number of micro-rotations is applied.

27

CORDIC Algorithm (3/4)

CORDIC 演算法分成兩種不同的操作模式: Vectoring Mode (VM) 和Rotation Mode (RM)

CORDIC Algorithm (4/4)

傳統的CORDIC Vectoring Mode 演算法	look-up-table free 之 CORDIC Vectoring Mode 演算法	傳統的CORDIC Rotation Mode 演算法	: look-up-table free 之 CORDIC Rotation Mode 演算法
Input : $x_{in} + j \cdot y_{in}$	Input : $x_{in} + j \cdot y_{in}$	Input : $x_{in} + j \cdot y_{in}$, ω_{in}	Input : $x_{in} + j \cdot y_{in}$
Output : $x_n + j \cdot y_n$, ϕ	Output : $x_n + j \cdot y_n$	Output : $x_n + j \cdot y_n$	$\sigma_x, \ \sigma_y, \ \sigma = [\sigma_0 \ \sigma_1 \ \cdots \ \sigma_i \ \cdots \ \sigma_{n-1}]$
% pre-rotation	$\sigma_x, \ \sigma_y, \ \sigma = [\sigma_0 \ \sigma_1 \ \cdots \ \sigma_i \ \cdots \ \sigma_{n-1}]$	% pre-rotation	Output : $x_n + j \cdot y_n$
1. $\sigma_x = sign(x_{in})$	% pre-rotation	1. if $-\alpha_{-1} \ge \omega_{in} \ge \alpha_{-1}$	% pre-rotation
2. $\sigma_y = sign(y_{in})$	1. $\sigma_x = sign(x_{in})$	$2. x_0 = x_{in}$	1. if $\sigma_x \ge 0$
3. if $\sigma_x \ge 0$	2. $\sigma_y = sign(y_{in})$	3. $y_0 = x_{in}$	2. $x_0 = x_{in}$
4. $x_0 = x_{in}$	3. if $\sigma_x \ge 0$	4. $\omega_0 = \omega_{in}$	3. $y_0 = x_{in}$
5. $y_0 = x_{in}$	4. $x_0 = x_{in}$	5. else	4. else
6. $\omega_0 = 0$	5. $y_0 = x_{in}$	6. $\sigma_{\omega} = -sign(\omega_{in})$	5. $x_0 = \sigma_y \cdot y_{in}$
7. else	6. else	7. $x_0 = \sigma_\omega \cdot y_{in}$	$6. y_0 = -\sigma_y \cdot x_{in}$
8. $x_0 = \sigma_y \cdot y_{in}$	7. $x_0 = \sigma_y \cdot y_{in}$	8. $y_0 = -\sigma_\omega \cdot x_{in}$	7. end
9. $y_0 = -\sigma_y \cdot x_{in}$	8. $y_0 = -\sigma_y \cdot x_{in}$	9. $\omega_0 = \omega_{in} + \sigma_\omega \cdot \alpha_{-1}$	% end pre-rotation
10. $\omega_0 = 0 + \sigma_y \cdot \alpha_{-1}$	9. end	10. end	8. for $i = 0 : n - 1$, do
11. end	% end pre-rotation	% end pre-rotation	9. $x_{i+1} = x_i + \sigma_i \cdot 2^{-i} \cdot y_i$
% end pre-rotation	10. for $i = 0 : n - 1$, do	10. for $i = 0$: $n - 1$, do	10. $y_{i+1} = y_i - \sigma_i \cdot 2^{-i} \cdot x_i$
12. for $i = 0$: $n - 1$, do	11. $\sigma_i = sign(y_i)$	11. $\sigma_i = -sign(\omega_i)$	11. end
13. $\sigma_i = sign(y_i)$	$12. x_{i+1} = x_i + \sigma_i \cdot 2^{-i} \cdot y_i$	$12. x_{i+1} = x_i + \sigma_i \cdot 2^{-i} \cdot y_i$	
$14. x_{i+1} = x_i + \sigma_i \cdot 2^{-i} \cdot y_i$	$13. y_{i+1} = y_i - \sigma_i \cdot 2^{-i} \cdot x_i$	13. $y_{i+1} = y_i - \sigma_i \cdot 2^{-i} \cdot x_i$	
$15. y_{i+1} = y_i - \sigma_i \cdot 2^{-i} \cdot x_i$	14. end	14. $\omega_{i+1} = \omega_i + \sigma_i \cdot \alpha_i$	
16. $\omega_{i+1} = \omega_i + \sigma_i \cdot \alpha_i$		15. end	

- 17. end
- 18. $\phi = \omega_n$

Real-Valued Givens Rotation

For real-valued
$$\begin{bmatrix} a & c \\ b & d \end{bmatrix}$$
,
 $\begin{bmatrix} \cos(\theta_{ab}) & -\sin(\theta_{ab}) \\ \sin(\theta_{ab}) & \cos(\theta_{ab}) \end{bmatrix} \begin{bmatrix} a & c \\ b & d \end{bmatrix}$
 $= \begin{bmatrix} \sqrt{|a|^2 + |b|^2} & c' \\ 0 & d' \end{bmatrix}$

where

$$\theta_{ab} = \tan^{-1}(b/a).$$

: 1 Givens rotation is used to compute $\sqrt{|a|^2 + |b|^2}$.

∴ 1 Givens rotation is used to compute
$$(c', d')$$
.

Complex-Valued Givens Rotation

For complex-valued
$$\begin{bmatrix} a & c \\ b & d \end{bmatrix}$$
,
 $\begin{bmatrix} \cos(\theta_{ab}) & -\sin(\theta_{ab}) \\ \sin(\theta_{ab}) & \cos(\theta_{ab}) \end{bmatrix} \begin{bmatrix} e^{-j\theta_a} & 0 \\ 0 & e^{-j\theta_b} \end{bmatrix} \begin{bmatrix} a & c \\ b & d \end{bmatrix}$
 $= \begin{bmatrix} \cos(\theta_{ab}) & -\sin(\theta_{ab}) \\ \sin(\theta_{ab}) & \cos(\theta_{ab}) \end{bmatrix} \begin{bmatrix} |a| & c' \\ |b| & d' \end{bmatrix}$
 $= \begin{bmatrix} \sqrt{|a|^2 + |b|^2} & c'' \\ 0 & d'' \end{bmatrix}$

: 3 Givens rotations are

used to compute $\sqrt{|a|^2 + |b|^2}$.

∴ 4 Givens rotations are used to compute $(c^{"}, d^{"})$.

where

$$\theta_a = \Box a, \ \theta_b = \Box b, \ \text{and} \ \theta_{ab} = \tan^{-1}(|b|/|a|).$$

Part II : CORDIC Rotation and Its Application

- Fundamentals of CORDIC rotation
- > QR-Decomposition of Matrices
- QR-Decomposition of Matrices for STBC MIMO System

QR-Decomposition of an *m***-by-***n* **Matrix**

If **A** is an $m \times n$ matrix with linearly independent columns,

then A can be factored as $\mathbf{A} = \mathbf{Q}\mathbf{R}$,

where **Q** is an $m \times n$ matrix whose columns

from an orthonormal basis for the column space of A

and **R** is an $n \times n$ upper triangular invertible matrix with positive entries on its diagonal.

QRD Methods

- Givens rotation based methods
- Gram-Schmidt Orthogonalization
- Householder transformation

The CORDIC Module

Finite number of micro-rotations

CCU Comm Smart Antenna Lab
TACR Triangular Systolic Array (1/3)

DU:

Delay Unit, delays the input signal (for period equal to PE operation time).

PE:

Processing Element, may operate in Vectoring and Rotation mode.

RU:

Rotation Unit, eliminates the complex lowest diagonal element of upper triangular matrix R.

$$\sqrt{|a|^{2} + |b|^{2}} \quad \begin{bmatrix} c^{(1)} \\ d^{(1)} \end{bmatrix} = \begin{bmatrix} \cos \theta_{ab} & \sin \theta_{ab} \\ -\sin \theta_{ab} & \cos \theta_{ab} \end{bmatrix} \begin{bmatrix} e^{-j\theta_{a}} & 0 \\ 0 & e^{-j\theta_{b}} \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} \begin{bmatrix} c \\ d \\ b \end{bmatrix} \begin{bmatrix} c \\ d \\ Smart Antenna Lab \end{bmatrix}$$

Ð **TACR Triangular Systolic Array (2/3)**

PE:

38

Rotation Unit, eliminates the complex lowest diagonal element of upper triangular matrix R.

時序分析圖

clk	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42
	\	\	\	\	\	\			VH	[11,21					VH	.11,31					VH	1,41																				
										RH	[12,22					RH	12,32					RH	2,42																			
											RH	[13,23					RH	13,33					RH	13,43																		
												RH	[14,24					RH	[14,34					RH1	4,44																	
													\	\		/	/	\	\			VH ₂₂	2,32					VH	I22,42													
															\	/	/	\	\	\			R	H23,33					F	XH 23,43	5											
																\	\backslash		\	\	\			RH	24,34					RE	24,44											
																										/	/	\	\	\	\backslash	\			VH	33,43						
																																				RH	[34,44					
																																									VH ₄₄	

其中VH_{ij,lk}表示做 TACR VM 操作

RH_{ij,lk}表示做 TACR RM 操作

最後一個VH_{ij}表示做 RU 元件的動作

Frequency

(clock cycles)

Power Consumption

(mW)

Energy consumed per

QRD (nJ)

Throughput rate

Hardware Implementation Results

Throughput rate = frequency / processing cycles

Givens Rotation

Complex

4-by-4

16 bits

9

ASIC 90 nm

125.4 MHz

19 at 0.9V

1.21

15.675M matrices/sec

Algorithm

System

(Tx-Rx)

Architecture

Matrix Size

Word lengths

Iterations

Technology

Pros and Cons of CORDIC Based Architecture

Advantages	Disadvantages
Fully parallel hardware structure	Long latency
Configurable structure	High bandwidth requirements both for periphery (RAM) and between PEs.
Division free circuits	Poor run-time fault tolerance due to lack of inter-connection protocol.

Part II : CORDIC Rotation and Its Application

- Fundamentals of CORDIC rotation
- > QR-Decomposition of Matrices

42

QR-Decomposition of Matrices for STBC MIMO System

Alamouti STBC MIMO

System Model :

$$\begin{bmatrix} x_{1,1} & x_{1,2} \\ x_{2,1} & x_{2,2} \end{bmatrix} = \begin{bmatrix} h_{1,1} & h_{1,2} \\ h_{2,1} & h_{2,2} \end{bmatrix} \begin{bmatrix} \mathbf{S}_1 \end{bmatrix} + \begin{bmatrix} w_{1,1} & w_{1,2} \\ w_{2,1} & w_{2,2} \end{bmatrix}$$

$$\mathbf{S}_{m} \Box \begin{bmatrix} s_{2m-1} & -s_{2m}^{*} \\ s_{2m} & s_{2m-1}^{*} \end{bmatrix}$$

Convert to linear model

$$\begin{bmatrix} x_{1,1} \\ -x_{1,2}^{*} \\ x_{2,1} \\ -x_{2,2}^{*} \end{bmatrix} = \begin{bmatrix} h_{1,1} & h_{1,2} \\ -h_{1,2}^{*} & h_{1,1}^{*} \\ h_{2,1} & h_{2,2} \\ -h_{2,2}^{*} & h_{2,1}^{*} \end{bmatrix} \begin{bmatrix} s_{1} \\ s_{2} \end{bmatrix} + \begin{bmatrix} w_{1,1} \\ -w_{1,2}^{*} \\ w_{2,1} \\ -w_{2,2}^{*} \end{bmatrix}$$

43

Smart Antenna Lab

Layered Alamouti STBC MIMO System

System model :

$$\begin{bmatrix} x_{1,1} & x_{1,2} \\ \vdots & \vdots \\ x_{N,1} & x_{N,2} \end{bmatrix} = \begin{bmatrix} h_{1,1} & \cdots & h_{1,2M} \\ \vdots & \ddots & \vdots \\ h_{N,1} & \cdots & h_{N,2M} \end{bmatrix} \begin{bmatrix} \mathbf{S}_1 \\ \vdots \\ \mathbf{S}_M \end{bmatrix} + \mathbf{W} \qquad \mathbf{S}_m \square \begin{bmatrix} s_{2m-1} & -s_{2m}^* \\ s_{2m} & s_{2m-1}^* \end{bmatrix}$$

Layered Alamouti STBC MIMO System

Convert to linear model

$$\mathbf{H}_{n,m} \Box \begin{bmatrix} h_{n,2m-1} & h_{n,2m} \\ -h_{n,2m}^* & h_{n,2m-1}^* \end{bmatrix}, \quad \forall n \text{ and } m$$

M = 2, N = 2

$$\begin{bmatrix} x_{1,1} \\ -x_{1,2}^{*} \\ x_{2,1} \\ -x_{2,2}^{*} \end{bmatrix} = \begin{bmatrix} h_{1,1} & h_{1,2} & h_{1,3} & h_{1,4} \\ -h_{1,2}^{*} & h_{1,1}^{*} & -h_{1,4}^{*} & h_{1,3}^{*} \\ h_{2,1} & h_{2,2} & h_{2,3} & h_{2,4} \\ -h_{2,2}^{*} & h_{2,1}^{*} & -h_{2,4}^{*} & h_{2,3}^{*} \end{bmatrix} \begin{bmatrix} s_{1} \\ s_{2} \\ s_{3} \\ s_{4} \end{bmatrix} + \begin{bmatrix} w_{1,1} \\ -w_{1,2}^{*} \\ w_{2,1} \\ -w_{2,2}^{*} \end{bmatrix} \\ \begin{bmatrix} w_{1,1} \\ -w_{1,2}^{*} \\ w_{2,1} \\ -w_{2,2}^{*} \end{bmatrix}$$

Transmit Time	Antenna 1	Antenna 2
t	<i>S</i> ₁	<i>S</i> ₂
$t+T_s$	$-s_{2}^{*}$	S_1^*
		Smart Antenna Lal

Double Space-Time Transmit Diversity, DSTTD

Transmitter

Hybrid Alamouti STBC MIMO

The hybrid Alamouti STBC MIMO system transmits every 2M symbols over two time instants using 2M - K transmit antennas

$$\begin{bmatrix} \tilde{x}_{1,1} \ \tilde{x}_{1,2} \\ \vdots \ \vdots \\ \tilde{x}_{N,1} \ \tilde{x}_{N,2} \end{bmatrix} = \begin{bmatrix} h_{1,1} \ \cdots \ h_{1,2M-K} \\ \vdots \ \ddots \ \vdots \\ h_{N,1} \ \cdots \ h_{N,2M-K} \end{bmatrix} \begin{bmatrix} s_1 \ -s_2^* \\ \vdots \ \vdots \\ \frac{s_{2K-1} \ -s_{2K}^*}{\mathbf{S}_{K+1}} \\ \vdots \\ \mathbf{S}_M \end{bmatrix} + \tilde{\mathbf{W}}, \ \mathbf{S}_m \Box \begin{bmatrix} s_{2m-1} \ -s_{2m}^* \\ s_{2m} \ s_{2m-1}^* \end{bmatrix} \begin{bmatrix} \mathbf{CCU \ Comm} \\ \mathbf{Smart \ Antenna \ Lab} \end{bmatrix}$$

Hybrid Alamouti STBC MIMO

Transmitter

Hybrid Alamouti STBC MIMO

Convert to linear model

N = 2, M = 2, K = 1

$$\begin{bmatrix} x_{1,1} \\ -x_{1,2}^{*} \\ x_{2,1} \\ -x_{2,2}^{*} \end{bmatrix} = \begin{bmatrix} h_{1,1} & 0 & h_{1,2} & h_{1,3} \\ 0 & h_{1,1}^{*} & -h_{1,3}^{*} & h_{1,2}^{*} \\ h_{2,1} & 0 & h_{2,2} & h_{2,3} \\ 0 & h_{2,1}^{*} & -h_{2,3}^{*} & h_{2,2}^{*} \end{bmatrix} \begin{bmatrix} s_{1} \\ s_{2} \\ s_{3} \\ s_{4} \end{bmatrix} + \mathbf{w}$$

Detection for Layered Alamouti STBC Signals

Base on the linear model, the maximum likelihood (ML) detection of **s** from observation **x** is $\hat{\mathbf{s}}_{ML} = \arg \min_{s \in \Omega^{2M}} \|\mathbf{x} - \mathbf{Hs}\|^2$, where Ω denotes the set of constellation points for each symbol s_m . With the QRD of $\mathbf{H} = \mathbf{QR}$, the ML detection becomes $\hat{\mathbf{s}}_{ML} = \arg \min_{s \in \Omega^{2M}} \|\mathbf{Q}^H \mathbf{x} - \mathbf{Rs}\|^2$.

Corollary 1: Let U and V be $2n \times 2m$ and $2m \times 2k$ matrices, respectively, comprised of Alamouti sub-blocks. The product UV is comprised of Alamouti sub-blocks.

Lemma 1: The QRD of the $\mathbf{H} = \mathbf{QR}$ produces matrices with Alamouti sub-blocks, i.e.,

$$\mathbf{Q} \Box \begin{bmatrix} \mathbf{Q}_{1,1} & \cdots & \mathbf{Q}_{1,M} \\ \vdots & \ddots & \vdots \\ \mathbf{Q}_{N,1} & \cdots & \mathbf{Q}_{N,M} \end{bmatrix} \text{ and } \mathbf{R} \Box \begin{bmatrix} \mathbf{R}_{1,1} & \cdots & \mathbf{R}_{1,M} \\ & \ddots & \vdots \\ \mathbf{0} & & \mathbf{R}_{M,M} \end{bmatrix},$$

with Alamouti sub-blocks

$$\mathbf{Q}_{n,m} \Box \begin{bmatrix} q_{n,2m-1} & q_{n,2m} \\ -q_{n,2m}^* & q_{n,2m-1}^* \end{bmatrix} \text{ and } \mathbf{R}_{n,m} \Box \begin{bmatrix} r_{n,2m-1} & r_{n,2m} \\ -r_{n,2m}^* & r_{n,2m-1}^* \end{bmatrix}.$$

BCGR (Block-wise Complex Givens Rotation) (1/2)

Consider an Alamouti block

$$\mathbf{A} \Box \begin{bmatrix} a_{1} & -a_{2}^{*} \\ a_{2} & a_{1}^{*} \end{bmatrix} = \begin{bmatrix} |a_{1}|e^{j\phi_{a1}} & -|a_{2}|e^{-j\phi_{a2}} \\ |a_{2}|e^{j\phi_{a2}} & |a_{1}|e^{-j\phi_{a1}} \end{bmatrix}$$

We can diagonalize A by

$$\underbrace{\sqrt{|a_1|^2 + |a_2|^2}}_{\sqrt{\alpha}} \mathbf{I}_2 = \underbrace{\begin{bmatrix} 1 & 0 \\ 0 & e^{j(\phi_{a_1} + \phi_{a_2})} \end{bmatrix}}_{\mathbf{T}_a} \begin{bmatrix} \cos \phi_{a_1 a_2} & \sin \phi_{a_1 a_2} \\ -\sin \phi_{a_1 a_2} & \cos \phi_{a_1 a_2} \end{bmatrix}}_{\mathbf{T}_a} \begin{bmatrix} e^{-j\phi_{a_1}} & 0 \\ 0 & e^{-j\phi_{a_2}} \end{bmatrix} \mathbf{A},$$

where $\phi_{a_1a_2} = \tan^{-1}(|a_2|/|a_1|).$

Compared with TACR, it is rotated by two more angles ϕ_{a1} and ϕ_{a2} , respectively Similarly, a different Alamouti matrix

$$\mathbf{B} \Box \begin{bmatrix} b_1 & -b_2^* \\ b_2 & b_1^* \end{bmatrix} = \begin{bmatrix} |b_1| e^{j\phi_{b_1}} & -|b_2| e^{-j\phi_{b_2}} \\ |b_2| e^{j\phi_{b_2}} & |b_1| e^{-j\phi_{b_1}} \end{bmatrix}$$

can also be diagonalized by

$$\underbrace{\sqrt{|b_1|^2 + |b_2|^2}}_{\sqrt{\beta}} \mathbf{I}_2 = \begin{bmatrix} \cos \phi_{b_1 b_2} e^{-j\phi_{b_1}} & \sin \phi_{b_1 b_2} e^{-j\phi_{b_2}} \\ -\sin \phi_{b_1 b_2} e^{j\phi_{b_2}} & \cos \phi_{b_1 b_2} e^{j\phi_{b_1}} \end{bmatrix} \mathbf{B},$$

where $\phi_{b_1 b_2} = \tan^{-1}(|b_2| / |b_1|).$

BCGR (Block-wise Complex Givens Rotation) (2/2)

Applying to a matrix with Alamouti sub-blocks A, B, C, and D,

we have $\begin{bmatrix} \sqrt{\alpha} \mathbf{I}_2 & \mathbf{C}^{(1)} \\ \sqrt{\beta} \mathbf{I}_2 & \mathbf{D}^{(1)} \end{bmatrix} = \begin{bmatrix} \mathbf{T}_a & 0 \\ 0 & \mathbf{T}_b \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{C} \\ \mathbf{B} & \mathbf{D} \end{bmatrix}$, where **C** and **D** are changed to

Alamouti blocks $\mathbf{C}^{(1)}$ and $\mathbf{D}^{(1)}$, respectively.

Next, applying the rotation with $\phi_{ab} = \tan^{-1}(|\beta|/|\alpha|)$ to the matrix on the left-hand-side,

$$\sum_{\mathbf{n}} \begin{bmatrix} \sqrt{\alpha + \beta} \mathbf{I}_{2} & \mathbf{C}^{(2)} \\ 0 & \mathbf{D}^{(2)} \end{bmatrix} = \begin{bmatrix} \cos \phi_{ab} & 0 & \sin \phi_{ab} & 0 \\ 0 & \cos \phi_{ab} & 0 & \sin \phi_{ab} \\ -\sin \phi_{ab} & 0 & \cos \phi_{ab} & 0 \\ 0 & -\sin \phi_{ab} & 0 & \cos \phi_{ab} \end{bmatrix} \begin{bmatrix} \sqrt{\alpha} \mathbf{I}_{2} & \mathbf{C}^{(1)} \\ \sqrt{\beta} \mathbf{I}_{2} & \mathbf{D}^{(1)} \end{bmatrix},$$

where $C^{(1)}$ and $D^{(1)}$ are rotated to Alamouti blocks $C^{(2)}$ and $D^{(2)}$, respectively.

Procedure of BCGR Based QRD

BCGR performs in the vectoring in the vetoring and rotation modes to process a 4×4 matrix with Alamouti sub-blocks.

Only the numbers of CORDIC vectoring and rotation operations are given.

Refer to Table I for the exact angles associated with CORDIC vectoring and rotation operations.

Complexity Comparison of the TACR and BCGR Based QRDs

Complexity comparison of the TACR and BCGR based QRDs of an $2M \times 2M$ matrix **H** with Alamouti sub-blocks

	TACR based QRD	BCGR based QRD	-
Number of CORDIC vectoring operations to compute R	$4M^2$	$2M^2 + M$	5000 TACR based QRD * BCGR based QRD
Number of CORDIC rotation operations to compute R	$8M^3 - 4M^2$	$(10/3)M^3 - 2M^2$ -(4/3)M	
Number of CORDIC rotation operations to compute Q	$12M^3 - 2M^2$	$5M^3 + M^2$	Number o
Total number of CORDIC operations to compute Q and R	$20M^3 - 2M^2$	$(25/3)M^3 + M^2$ -(1/3)M	2 3 4 5 6 Number of receive antennas N = M

BCGR-TSA Architecture (1/2)

BCGR-TSA architecture for the QRD of 8×8 H with

Alamouti sub-blocks

BCGR-TSA Architecture (2/2)

57

Architectural Comparisons of the TACR-TSA and BCGR-TSA

Architectural comparision of the TACR-TSA and BCGR-TSA to compute the QRD of a $2M \times 2M$ channel matrix with Alamouti sub-blocks

	TACR-TSA	BCGR-TSA
Number of CORDIC modules in a PE#1	4	14
Number of PE#1 modules	2 <i>M</i> -1	M-1
Number of CORDIC modules in a PE#2	3	9
Number of PE#2 modules	$2M^2 - 3M + 1$	$(1/2)M^2$ -(3/2)M+1
Number of CORDIC modules in the rotation unit	1	5
Number of rotation unit	1	1
Total number of CORDIC modules in the TSA	$6M^2 - M$	$(9/2)M^2 + (1/2)M$
Latency of a PE (clock cycles)	6	12
Processing cycles (clock cycles)	4 <i>M</i>	2 <i>M</i>
Processing Latency (clock cycles)	28 <i>M</i> –10	26 <i>M</i> –16

Comparisons with Other Architectures

Architecture	[21]	[22]	[23]	[24]	[27]	TACR-T	'SA[36]	BCGR-TS.	A (Proposed)		
System	SDM	SDM	SDM	SDM	SDM	SE	DM	Layered Alamouti STBC			
Antennas (Tx×Rx)	(4×4)	(2×2)	(4×4)	(4×4)	(4×4)	(4×4)	(8×8)	(4×2)	(8×4)		
Complex/Real (Matrix Size)	$\begin{array}{c} \text{Complex} \\ (4 \times 4) \end{array}$	Real (4×4)	$\begin{array}{c} \text{Complex} \\ (4 \times 4) \end{array}$	$\begin{array}{c} \text{Complex} \\ (4 \times 4) \end{array}$	Complex (4×4)	$\begin{array}{c} \text{Complex} \\ (4 \times 4) \end{array}$	Complex (8×8)	$\begin{array}{c} \text{Complex} \\ (4 \times 4) \end{array}$	Complex (8×8)		
Algorithm	GR	MGS	GR	GR	GR	G	R	GR			
Matrix R or (Q, R)	R	(\mathbf{Q}, \mathbf{R})	R	R	R	(Q.	(\mathbf{Q}, \mathbf{R})		(\mathbf{Q}, \mathbf{R})		
CMOS Technology	0.13 μm	0.18 µm	0.18 µm	0.18 µm	$0.18 \ \mu m$	90	nm	90	nm		
Frequency (MHz)	270	400	100	120	200	12	5.4	125.4			
Gate Count	36 K	32.6 K	111 K	134.6 K	103.7 K	132 K	575 K	115 K	471 K		
Processing Cycles (clock cycles)	20	35	4	8	8	8	16	4	8		
Processing Latency (clock cycles)	20	35	30	92	91	46	102	36	88		
Throughput Rate (QRDs/s)	6.75 M	11.4 M	12.5 M	7.5 M	12.5 M	15.68 M	7.84 M	31.35 M	15.68 M		

Extension to the Hybrid Alamouti STBC and SDM system

Three modes of the MIMO system with 2 receive antennas

: :	Mode	(N, M, K)	Antenna configuration (Tx×Rx)	Equivalent channel matrix
$\vdots h_{2,2} 0$ SDM mode	Layered			$\begin{bmatrix} \mathbf{H}_{1,1} & \mathbf{H}_{1,2} \end{bmatrix}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Alamouti STBC	(2, 2, 0)	4×2	$\begin{bmatrix} \mathbf{H}_{2,1} & \mathbf{H}_{2,2} \end{bmatrix}$
$\begin{array}{c} \hline & & \\ \hline \\ \hline$	Layered			5 . 7
$h_{1,3} - h_{1,4}^* = h_{2,1} = 0$ STBC mode	Alamouti	(2, 2, 1)	3×2	$\begin{bmatrix} \mathbf{\Lambda}_{1,1} & \mathbf{H}_{1,2} \\ \mathbf{\Lambda}_{2,1} & \mathbf{H}_{2,2} \end{bmatrix}$
$h_{1,1}$ 0	STBC			
	SDM	(2, 2, 1)	2×2	$\begin{bmatrix} \mathbf{\Lambda}_{1,1} & \mathbf{\Lambda}_{1,2} \\ \mathbf{\Lambda}_{2,1} & \mathbf{\Lambda}_{2,2} \end{bmatrix}$
$\begin{array}{c} h_{1,3} - h_{1,4}^{*} & h_{2,1} - h_{2,2}^{*} \end{array} \qquad $	Hybrid Alan STBC mo $r_{1,3}$ $r_{1,4}$ $r_{2,2}$ 0 $r_{1,4}$ $r_{2,2}$ 0 $r_{1,4}$ $r_{2,2}$ $r_{2,4}$ $r_{2,4$	$\begin{array}{c c} \text{Layered} \\ \text{STBO} \\ \hline \\ \hline$	Alamouti $r_{1,1}$ 0	
				CU Comm mart Antenna

The Architecture Design for the Hybrid Alamouti STBC MIMO System

The Architecture Design for the SDM MIMO System

The Enable CORDIC Modules for the Architecture in PE#1

Mode	Enable C modules	CORDIC in PE#1	Enable C modules	ORDIC	Processing	Processing	
	vectoring	rotation	vectoring	rotation	Latency	Cycles	
Layered Alamouti STBC	1, 2, 5, 6, 7, 10, 11	1, 2, 3, 4, 5, 6, 7, 8, 9, 10,11, 12, 13, 14	1, 2, 3	1, 2, 3, 4, 5	36	4	
Hybrid Alamouti STBC	1, 6, 11	1, 5, 6, 10, 11, 12, 13, 14	1, 2, 3	1, 2, 3, 4, 5	24	4	
SDM	1, 6, 11	1, 6, 11, 13	1	1	18	4	

Smart Antenna Lab

Comparisons with Other Architectures

Items	TACR-TSA	BCGR-TSA	BCGR-TSA for the 3-mode	TACR-TSA	BCGR-TSA
Algorithm	GR	GR	GR	GR	GR
	(CORDIC)	(CORDIC)	(CORDIC)	(CORDIC)	(CORDIC)
System	SDM	DSTTD	MULTIMODE	SDM	DSTTD
(Tx-Rx)	(4x4)	(4x2)		(8x8)	(8x4)
Architecture	TSA	TSA	TSA	TSA	TSA
Complex/Real	Complex	Complex	Complex	Complex	Complex
Matrix	4*4	4*4	4*4	8*8	8*8
(N*N)					
Wordlengths	16	16	16	16	16
Iterations	9	9	9	9	9
Technology	ASIC	ASIC	ASIC	ASIC	ASIC
	90 nm	90 nm	90 nm	90 nm	90 nm
Frequency	125.4	125.4	125.4	125.4M	125.4
(MHz)					
Gate Count	132K	115K	119K	575K	471K
Processing Cycles	8	4	4	16	8
(clock cycles)					
Processing Latency	46	36	36/24/18	102	88
(clock cycles)			(DSTTD/Hybrid Alamouti STBC/SDM)		
Power Consumption	19 at 0.9V	20 at 0.9V	20/16/3 at 0.9V	50 at 0.9V	78 at 0.9V
(шW)			(DSTTD/Hybrid Alamouti STBC/SDM)		
Energy consumed per QRD	1.21	0.64	0.64/0.51/0.10	6.40	4.99
(nJ)			(DSTTD/Hybrid Alamouti STBC/SDM)		

Other Applications of the CORDIC

- Singular Value Decomposition of Matrices (MIMO precoding techniques)
- Compute the angle of a complex value (frequency offset estimation)
- Rotate a complex number by an angle (frequency compensation)

Part III : Precoding Techniques

- Precoding Fundamentals
- Compressed Beamforming Weight Precoding
- Codebook Based Precoding

Precoding MIMO System (1/3)

67

Precoding is a processing technique that exploits CSIT by operating on the signal before transmission to improve the performance of the system. In designing the precoder, various performance criteria have been used.

Precoding MIMO System (2/3)

The availability of CSI at the transmitter (CSIT) is possible via feedback or the reciprocal principle when time division duplex (TDD) is used.

Procedure for the precoding MIMO system

Smart Antenna Lab

Transmit Beamforming with One Spatial Stream

Transmit beamforming with one receive antenna Transmitter Modulation Beamformer MISO

One spatial stream

Transmit beamforming with multiple receive antennas

Channel

Transmit Beamforming with One Receive Antenna

71

The instantaneous SNR at the equalizer output is $\gamma = \frac{\mathbf{E}\{ |\mathbf{x}|^2\}}{\mathbf{E}\{ |\mathbf{n}|^2\}} |\alpha|^2 = \frac{E_s}{N_0} |\mathbf{h}^T \mathbf{p}|^2$. The optimal beamforming vector that maximizes the instantaneous SNR is expressed as $\sup_{\mathbf{p}} |\mathbf{a}_{\mathbf{p}}|^2 = 1$ The Cauchy-Schwarz inequality $|\mathbf{h}^T \mathbf{p}|^2 \le ||\mathbf{h}||^2 ||\mathbf{p}||^2 \le ||\mathbf{h}||^2 \Rightarrow \mathbf{p} = \frac{\mathbf{h}^*}{||\mathbf{h}||}$ For the optimal beamformer, the instantaneous SNR at the equalizer output is $\gamma = \frac{E_s}{N_0} ||\mathbf{h}||^2 \sim \chi^2 (2N_t)$.

 \Rightarrow The instantaneous BER \Rightarrow The theoretical average BER

Comparisons Between Transmit Beamforming and Receive MRC

CCU Comm Smart Antenna Lab

Smart Antenna Lab

ZF detection

$$\hat{x} = \left(\tilde{\mathbf{h}}^{H}\tilde{\mathbf{h}}\right)^{-1}\tilde{\mathbf{h}}^{H}\mathbf{y} = \frac{\tilde{\mathbf{h}}^{H}\mathbf{y}}{\left\|\tilde{\mathbf{h}}\right\|^{2}} = x + \frac{\tilde{\mathbf{h}}^{H}\mathbf{n}}{\left\|\tilde{\mathbf{h}}\right\|^{2}}$$

The instantaneous SNR at the detection output is $\gamma = \frac{\mathbf{E}\{ |x|^2 \}}{\mathbf{E}\{ |\mathbf{\tilde{h}}^H \mathbf{n}|^2 \}} \|\mathbf{\tilde{h}}\|^4 = \frac{E_s}{N_0} \|\mathbf{\tilde{h}}\|^2 = \frac{E_s}{N_0} \|\mathbf{Hp}\|^2.$

74

Transmit Beamforming with Multiple Receive Antennas

The optimal beamforming vector that maximizes the instantaneous SNR is expressed

as

$$\arg \max_{\mathbf{p}} \left\| \mathbf{H} \mathbf{p} \right\|^2$$

s.t.
$$\left\| \mathbf{p} \right\|^2 = 1$$

The solution of the optimal problem turns out to be the right singular vector corresponding to the largest singular value of the channel matrix.

$$\begin{split} \mathbf{N} &= \min\{N_T, N_R\} \\ \mathbf{H} &= \mathbf{U}\mathbf{\Sigma}\mathbf{V}^H = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \cdots & \mathbf{u}_N \end{bmatrix} \begin{bmatrix} \sigma_1 & \mathbf{0} \\ \sigma_2 & & \\ \mathbf{0} & \ddots & \\ \mathbf{0} & & \sigma_N \end{bmatrix} \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_N \end{bmatrix}^H \text{ where } \begin{aligned} \mathbf{V} \in \Box^{N_T \times N} \\ \mathbf{v} \in \sigma_1 \geq \sigma_2 \geq \cdots \\ \mathbf{v} \in \sigma_N \geq 0 \end{aligned}$$

Let
$$\mathbf{p} = \mathbf{v}_1 \square \mathbf{v}_1 \mathbf{v}_1 + \mathbf{n} = \sigma_1 \mathbf{u}_1 x + \mathbf{n}$$

$$\mathbf{H} \mathbf{v}_1 = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^H \mathbf{v}_1 = \mathbf{U} \mathbf{\Sigma} \begin{bmatrix} \mathbf{v}_1^H \mathbf{v}_1 \\ \mathbf{v}_2^H \mathbf{v}_1 \\ \vdots \end{bmatrix} = \mathbf{U} \mathbf{\Sigma} \begin{bmatrix} 1 \\ 0 \\ \vdots \end{bmatrix} = \mathbf{U} \begin{bmatrix} \sigma_1 \\ 0 \\ \vdots \end{bmatrix} = \sigma_1 \mathbf{u}_1$$

The instantaneous SNR

$$\gamma = \frac{E_s}{N_0} \left\| \boldsymbol{\sigma}_1 \mathbf{u}_1 \right\|^2 = \frac{E_s}{N_0} \boldsymbol{\sigma}_1^2$$

Optimal Beamformer

76

Based on the Various Performance Metrics

Signal model
$$\mathbf{y} = \mathbf{H}\mathbf{p}\mathbf{x} + \mathbf{n}$$

ZF detection $\hat{x} = x + \frac{(\mathbf{H}\mathbf{p})^H \mathbf{n}}{\|\mathbf{H}\mathbf{p}\|^2}$
The Performance Metrics
Post-processing SNR $\gamma = \frac{E_s}{N_0} \|\mathbf{H}\mathbf{p}\|^2$ arg max γ
Mean squared error $MSE = E\{ |\hat{x} - x|^2 \}$ arg min MSE
Bit error rate $P_b = \alpha_1 Q(\sqrt{\alpha_2 \gamma})$ arg min P_b
Channel capacity $C = \log_2 \det \left[\mathbf{I} + \frac{E_s}{N_0} (\mathbf{H}\mathbf{p}) (\mathbf{H}\mathbf{p})^H\right]$
 $= \log_2 \left[1 + \frac{E_s}{N_0} \sigma_1^2\right]$ arg max C
Singular value of $\mathbf{H}\mathbf{p}$ $\|\mathbf{H}\mathbf{p}\|^2$
 $C = \log_2 \det \left[\mathbf{I} + \rho \mathbf{A}\mathbf{A}^H\right]$
 $= \sum_{i=1}^{K} \log_2 \left[1 + \rho \sigma_i^2\right]$

Transmit Beamforming with One Spatial Stream

