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Part I: Theory

 Introduction to channel coding theory

 Introduction to Linear Block Code

 Introduction to the theory of Low Density Parity Check  

code (LDPC)  

 Encoding and Decoding Algorithm of LDPC code

 Introduction to the theory of Polar Code

 Encoding and Decoding Algorithm of Polar code
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Outline

Part II: Experiment

 Introduction to Matlab/Simulink

 Introduction to Zedboard

 Hamming code Enc / Dec experiment

 LDPC code Enc / Dec experiment

 Polar code Enc / Dec experiment

 QPSK transceiver experiment with Enc / Dec capability
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Why channel coding?

SNR
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bP

2X 1X
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BSC: P=0.1
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What’s the performance limit?

SNR

BER

?
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Claude E. Shannon (1916-2001)
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Linear Block Codes



Introduction
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Low-Density Parity-Check Codes



 Introduction

 Decoding Algorithm of LDPC Codes

 Classifications of LDPC Codes

 Analysis of LDPC Codes

 LDPC Codes in Practical System

Outline
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Introduction

 Low-density parity-check (LDPC) codes are a class of 

linear block codes which provide near-capacity 

performance on many channels.

 We only consider binary LDPC codes in this lecture.
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Introduction

 History:

 LDPC codes were invented by Gallager in his 1960 doctoral 

dissertation.

 In 1981, Tanner generalized LDPC codes and introduced a 

graphical representation of LDPC codes, now called a Tanner 

graph.

 The study of LDPC codes was resurrected in the mid 1990s with 

the work of MacKay, Luby, and others
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Introduction

 Advantages over turbo codes:

 Do not require a long interleaver for near capacity 

performances.

 Lower error floor value.

 More simple decoding architecture.

 More flexible for code design.
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 Matrix Representation

 An LDPC code is a linear block code given by the null space of 

an  𝑚 × 𝑛 parity-check matrix 𝑯 that has a low density of 1's

 A density of 0.01 or lower can be called low density

• But no stringent restriction

 A regular LDPC code is a linear block code whose 𝑯 has 

column weight 𝑔 and row weight 𝑟, where 𝑟 = 𝑔(𝑛/𝑚) and 𝑔 ≪
𝑚. Otherwise, it is an irregular LDPC code
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 Almost all LDPC code constructions impose the following 

additional structure property on 𝑯 : no two rows(or two columns) 

have more than one position in common that contains a nonzero 

element. This is called row-column constraint (RC constraint).

 The low density aspect of LDPC codes accommodates iterative 

decoding which has near-maximum-likelihood performance at 

error rates of interest for many applications.
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 The code rate R for a regular LDPC code is bounded as

𝑅 ≥ 1 −
𝑚

𝑛
= 1 −

𝑔

𝑟
,

with equality when 𝑯 is full rank.
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 Graphical Representation

 The Tanner graph of an LDPC code is analogous to the trellis of 

a convolutional code.

 A Tanner graph is a bipartite graph whose nodes may be 

separated into two types, with edges connecting only nodes of 

different types.

28



 The two types in a Tanner graph are the variable nodes (VNs) 

(or code-bit nodes) and the check nodes(CNs) (or constraint 

nodes).

 The Tanner graph of a code is drawn as follows: CN i is 

connected to VN j whenever element ℎ𝑖𝑗 in 𝑯 is a 1.

 There are m CNs in a Tanner graph, one for each check 

equation (row of 𝑯), and n VNs, one for each code bit (column 

of 𝑯)

 The allowable n-bit words represented by the n VNs are the 

codewords in the code.
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 Example of Tanner Graph: A (10,5) code with 𝑔 = 𝑤𝑐 = 2, 𝑟 =
𝑤𝑟 = 4, and the following 𝑯 matrix:

𝐻 =

１ １ １ １ ０ ０ ０ ０ ０ ０

１ ０ ０ ０ １ １ １ ０ ０ ０

０ １ ０ ０ １ ０ ０ １ １ ０

０ ０ １ ０ ０ １ ０ １ ０ １

０ ０ ０ １ ０ ０ １ ０ １ １

.
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 A sequence of edges forms a closed path in a Tanner graph is 

called a cycle.

 Cycles force the decoder to operate locally in some portions of 

the graph so that a globally optimal solution is impossible.

 At high densities, many short cycles will exist, thus precluding 

the use of an iterative decoder.

 The length of a cycle is equal to the number of edges in the 

cycle.
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 The minimum cycle length in a given bipartite graph is called the 

graph's girth.

 The shortest possible cycle in a bipartite graph is a length-4 

cycle.

 Such cycles manifest themselves in the 𝑯 matrix as four 1s that 

lie on the four corners of a rectangular submatrix of 𝑯

 RC constraint eliminates length-4 cycles

 The number of edges in a Tanner graph is 𝑚𝑟 = 𝑛𝑔
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 The original LDPC codes are random in the sense that 

their parity-check matrices possess little structure.

 Both encoding and decoding become quite complex 

when the code possesses no structure beyond being a 

linear code.

 The nominal parity-check matrix 𝑯 of a cyclic code is a 

𝑛 × 𝑛 circulant; that is, each row is a cyclic-shift of the 

one above it, with the first row a cyclic-shift of the last 

row.
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 The implication of a sparse circulant matrix 𝑯 for LDPC 

decoder complexity is substantial.

 Beside being regular, a drawback of cyclic LDPC codes 

is that the nominal 𝑯 matrix is 𝑛 × 𝑛, independently of 

the code rate, implying a more complex decoder.

 Another drawback is that the known cyclic LDPC codes 

tend  to have large row weights, which makes decoder 

implementation tricky.
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 Quasi-cyclic (QC) codes also possess tremendous 

structure, leading to simplified encoder and decoder 

designs.

 They permit more flexibility in code design, particularly 

irregularity, and, hence, lead to improved codes relative 

to cyclic LDPC codes.
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 The 𝑯 matrix of a QC code is generally represented as 

an array of circulants, e.g.,

𝑯 =
𝐴11 ⋯ 𝐴1𝑁
⋮ ⋱ ⋮

𝐴𝑀1 ⋯ 𝐴𝑀𝑁

,

where each matrix 𝐴𝑟𝑐 is a 𝑄 × 𝑄 circulant
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 To affect irregularity, some of the circulants may be the 

all-zeros  𝑄 × 𝑄 matrix using a technique called masking

 For irregular LDPC codes, it is usual to specify the 𝑉𝑁
and 𝐶𝑁 degree-distribution polynomials, denoted by 

𝜆(X) and 𝜌(𝑋), respectively.

 In the polynomial, 

𝜆(X) = ෍

d=1

dv

𝜆𝑑𝑋
𝑑−1 [𝜌(𝑋) = ෍

𝑑=1

𝑑𝑐
𝜌𝑑𝑋

𝑑−1]

𝜆d(𝜌d): the fraction of all edges connected to degree-𝑑

𝑉𝑁𝑠(𝐶𝑁𝑠)

𝑑𝑣(𝑑𝑐): the maximum 𝑉𝑁(𝐶𝑁) degree
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 For (2,4)-regular LDPC code, we have 𝜆 X = X, 𝜌 X = X3

 Let us denote the number of 𝑉𝑁𝑠 (𝐶𝑁𝑠) of degree d by 

𝑁𝑣 (𝑑) (𝑁𝑐 (𝑑)). Let 𝐸 denote the number of edges in the graph.

𝐸 =
𝑛

0׬
1
𝜆 𝑋 𝑑𝑋

=
𝑚

0׬
1
𝜌 𝑋 𝑑𝑋

𝑁𝑣 (𝑑) =
𝐸𝜆𝑑
𝑑

=

𝑛𝜆𝑑
𝑑

0׬
1
𝜆 𝑋 𝑑𝑋

𝑁𝑐 (𝑑) =
𝐸𝜌𝑑
𝑑

=

𝑚𝜌𝑑
𝑑

0׬
1
𝜌 𝑋 𝑑𝑋
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 The code rate R is bounded as

𝑅 ≥ 1 −
𝑚

𝑛
= 1 −

0׬
1
𝜌 𝑋 𝑑𝑋

0׬
1
𝜆 𝑋 𝑑𝑋

The polynomials 𝜆(X) and 𝜌(𝑋) represent a Tanner graph’s 

degree

distributions from an “edge perspective”

 The degree distributions may also be represented from a “node 

perspective” using the notation ሚ𝜆 X ( ෤𝜌(X)), where the coefficient 
ሚ𝜆𝑑 ( ෤𝜌𝑑) is the fraction of all 𝑉𝐷𝑠 (𝐶𝑁𝑠)that have degree 𝑑

ሚ𝜆𝑑 =
𝑁𝑣(𝑑)

𝑛
=

Τ𝑛𝜆𝑑 𝑑

𝑛 0׬
1
𝜆(𝑋) 𝑑𝑥

=
Τ𝜆𝑑 𝑑

0׬
1
𝜆(𝑋) 𝑑𝑥

෤𝜌𝑑 =
Τ𝜌𝑑 𝑑

0׬
1
𝜌(𝑋) 𝑑𝑥

39



 In addition to partitioning LDPC codes into three classes, 

i.e., cyclic, quasi-cyclic, and random (but linear), the 

LDPC code-construction techniques can be partitioned 

as well
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 The first class of construction techniques can be 

described as algorithmic or computer-based.

 The computer-based construction techniques can lead to either 

random or structured LDPC codes.

 The second class of construction techniques consists of 

those based on finite mathematics, including algebra, 

combinatorics, and graph theory.

 The mathematical construction techniques generally lead to 

structured LDPC codes, although exceptions exist.
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Decoding Algorithm of LDPC Codes

 Message Passing and the Turbo Principle

 The key innovation behind LDPC codes is the low-density 

nature of the parity- check matrix, which facilitates iterative 

decoding.

 Sum-product algorithm (SPA) is a general algorithm that 

provides near-optimal performance across a broad class of 

channels.

 Message-passing decoding refers to a collection of low-

complexity decoders working in a distributed fashion to decode 

a received codeword in a concatenated coding scheme.
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 We can consider an LDPC code to be a generalized 

concatenation of many single parity-check (SPC) codes.

 A message-passing decoder for an LDPC code employs an 

individual decoder for each SPC code and these decoders 

operate cooperatively in a distributed fashion to determine the 

correct code bit values.
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 Example: (3,2) × (3,2) SPC product code as an LDPC code

44



 Message-passing decoding for a collection of constituent 

decoders arranged in a graph is optimal provided that the graph 

contains no cycles, but it is not optimal for graphs with cycles.

 Consider the figure in next slide, which depicts six soldiers in a 

linear formation. The goal is for each of the soldiers to learn the 

total number of soldiers present by counting in a distributed 

fashion.
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Distributed soldier counting. (a) Soldiers in a line. (b) 

Soldiers in a tree formation. (c) Soldiers in a formation 

containing a cycle
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 Consider (b). The message that an arbitrary soldier 𝑋 passes to 

arbitrary neighboring soldier 𝑌 is equal to the sum of all 

incoming messages, plus one for soldier 𝑋, minus the message 

that soldier 𝑌 had just sent to soldier 𝑋

 This message-passing rule introduces the concept of extrinsic 

information.
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 The idea is that a soldier does not pass to a neighboring soldier 

any information that the neighboring soldier already has, that is, 

only extrinsic information is passed.

 We say that soldier 𝑋 passes to soldier 𝑌 only extrinsic 

information, which may be computed as

𝐼𝑋→𝑌 = ෍

𝑍∈𝑁 𝑋

𝐼𝑍→𝑋 − 𝐼𝑌→𝑋 + 𝐼𝑋

= ෍

𝑍∈𝑁 𝑋 −{𝑌}

𝐼𝑍→𝑋 + 𝐼𝑋
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where 𝑁(𝑋) is the set of neighbors of soldier 𝑋, 𝐼𝑋→𝑌
is the extrinsic information sent from solider 𝑋 to 

solider 𝑌

 𝐼𝑋 is the “one" that a soldier counts for himself and 𝐼𝑋 is called 

the intrinsic information.

 Consider (c). There is a cycle and the situation is unstable.

 While most practical codes contain cycles, it is well known that 

message-passing decoding performs very well for properly 

designed codes for most error-rate ranges of interest
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 The notion of extrinsic-information passing described above has 

been called the turbo principle in the context of the iterative 

decoding of concatenated codes in communication channel.

 A depiction of the turbo principle is contained in next slide.
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 The Sum-Product Algorithm (SPA)

 We derive the sum-product algorithm for general memoryless 

binary-input channels, applying the turbo principle in our 

development.

 The optimality criterion underlying the development of the SPA 

decoder is symbol-wise maximum a posteriori (MAP).
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 We are interested in computing the a posteriori probability 

(APP) that a specific bit in the transmitted codeword

𝑣 = (𝑣0, 𝑣1, … , 𝑣𝑛−1)

equals 1, given the received word

𝑦 = (𝑦0, 𝑦1, … , 𝑦𝑛−1).

 Without loss of generality, we focus on the decoding of bit 𝑣𝑗

and  calculate Pr(𝑣𝑗|𝑦).
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 The APP ratio and log-likelihood ratio (LRR) are

ℓ 𝑣𝑗 𝑦) =
Pr(𝑣𝑗=0|𝑦)

Pr(𝑣𝑗=1|𝑦)

and

L 𝑣𝑗 𝑦) = log
Pr 𝑣𝑗 = 0 𝑦

Pr 𝑣𝑗 = 1 𝑦

respectively.

 The natural logarithm is assumed for LLRs.
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 The SPA for the computation of Pr(𝑣𝑗 = 1 | y), ℓ(𝑣𝑗 | y), or L(𝑣𝑗 | 

y) is a distributed algorithm that is an application of the turbo 

principle to a code's Tanner graph.

 An LDPC code can be deemed a collection of SPC codes 

concatenated through an interleaver to a collection of repetition 

(REP) codes.
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 The SPC codes are treated as outer codes, that is, they are not 

connected to the channel.

 The following is a graphical representation of an LDPC code as 

a concatenation of SPC and REP codes. “ς" represents an 

interleaver.
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 The figure depicts the REP (VN) decoder .

 The VN j decoder receives LLR information both from the 

channel and from its neighbors.
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 In the computation of the extrinsic information 𝐿𝑗→𝑖, VN 𝑗 need 

not receive 𝐿𝑖→𝑗 from CN 𝑖 since it would be subtracted out 

anyway.

 The above figure depicts the SPC (CN) decoder situation.
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 The VN and CN decoders work cooperatively and iteratively to 

estimate 𝐿 𝑣𝑗 𝑦 for 𝑗 = 0,1, … , 𝑛 − 1.

 Assume that the flooding schedule is employed.

 According to this schedule, all VNs process their inputs and 

pass extrinsic information up to their neighboring CNs; the CNs 

then process their inputs and pass extrinsic information down to 

their neighboring VNs; and the procedure repeats, starting with 

the VNs.
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 After a preset maximum number of repetitions (or iterations) of 

this VN/CN decoding round, or after some stopping criterion has 

been met, the decoder computes (estimates) the LLRs 𝐿(𝑣𝑗|y)

from which decisions on the bits 𝑣𝑗 are made.

 When the cycles are large, the estimates will be very accurate 

and the decoder will have near-optimal (MAP) performance.
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 Repetition Code MAP Decoder and APP Processor

 At this point, we need to develop the detailed operations within 

each constituent (CN and VN) decoder.

 Consider a REP code in which the binary code symbol 𝑐 ∈ {0,1}
is transmitted over a memoryless channel 𝑑 times so that the 𝑑-

vector 𝑟 is received.
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 The MAP decoder computes the log-APP ratio

L 𝑐 𝑟) = log
Pr 𝑐 = 0 𝑟

Pr 𝑐 = 1 𝑟

 which is equal to

L 𝑐 𝑟) = log
Pr 𝑟 𝑐 = 0

Pr 𝑟 𝑐 = 1

 under an equally likely assumption for the value of c.
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 This simplifies as

L 𝑐 𝑟) = log
ς𝑙=0
𝑑−1Pr(𝑟𝑙|𝑐 = 0)

ς𝑙=0
𝑑−1Pr(𝑟𝑙|𝑐 = 1)

= σ𝑙=0
𝑑−1 𝑙𝑜𝑔

Pr 𝑟𝑙 𝑐 = 0
Pr 𝑟𝑙 𝑐 = 1

= σ𝑙=0
𝑑−1 𝐿( 𝑟𝑙 𝑐 = σ𝑙=0

𝑑−1 𝐿( 𝑐 𝑟𝑙

where 𝐿 𝑟𝑙 𝑐 and 𝐿(𝑐|𝑟𝑙) are obviously defined.

 The MAP receiver for a REP code computes the LLRs for each 

channel output 𝑟𝑙 and adds them. The MAP decision is Ƹ𝑐 = 0 if 

𝐿 𝑐 𝑟 ≥ 0 and Ƹ𝑐 = 1 otherwise.
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 In the context of LDPC decoding, the above expression is 

adapted to compute the extrinsic information to be sent from 

VN 𝑗 to CN 𝑖,

𝐿𝑗→𝑖 = 𝐿𝑖 + ෍

𝑖′∈𝑁 𝑗 −{𝑖}

𝐿𝑖′→𝑗

 The quantity 𝐿𝑗 in this expression is the LLR value computed 

from the channel sample 𝑦𝑖 ,

𝐿𝑗 = 𝐿(𝑐𝑗|𝑦𝑗).
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 In the context of LDPC decoding, we call the VN an APP 

processor instead of a MAP decoder. At the last iteration, VN 𝑗
produces a decision based on

𝐿𝑗
total = 𝐿𝑗 + ෍

𝑖∈𝑁(𝑗)

𝐿𝑖→𝑗
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 Single-Parity-Check Code MAP Decoder and APP

Processor

 To develop the MAP decoder for an SPC code we first need the 

following result due to Gallager.

66



 Consider a vector of d independent binary random variables 𝑎 =

𝑎0, 𝑎1, … , 𝑎𝑑−1 in which Pr 𝑎𝑙 = 1 = 𝑝1
(𝑙)

and Pr 𝑎𝑙 = 0 = 𝑝0
(𝑙)

. 

Then the probability that a contains an even number of 1s is

1

2
+
1

2
ෑ

𝑙=0

𝑑−1

1 − 2𝑝1
(𝑙)

and the probability that 𝑎 contains an odd number of   

1’s is

1

2
−
1

2
ෑ

𝑙=0

𝑑−1

1 − 2𝑝1
(𝑙)
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 (Partial Proof) 

 Assume that the above equations are true for 𝑑 = 𝑘. Then the 

probability that a contains an even number of 1s for 𝑑 = 𝑘 + 1 is

1

2
+
1

2
ෑ

𝑙=0

𝑘−1

1 − 2𝑝1
𝑙

1 − 𝑝1
𝑘

+
1

2
−
1

2
ෑ

𝑙=0

𝑘−1

1 − 2𝑝1
𝑙

∙ 𝑝1
𝑘

=
1

2
+

1

2
ς𝑙=0
𝑘−1 1 − 2𝑝1

𝑙
1 − 𝑝1

𝑘
− 𝑝1

(𝑘)

=
1

2
+

1

2
ς𝑙=0

𝑘+1 −1
(1 − 2𝑝1

𝑙
)
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 Consider the transmission of a length-𝑑 SPC codeword 𝑐 over a 

memoryless channel whose output is 𝒓.

 The bits 𝑐𝑙 in the codeword 𝑐 have a single constraint: there 

must be an even number of 1s in 𝑐. Without loss of generality, 

we focus on bit 𝑐0, for which the MAP decision rule is

ෝ𝑐0 = arg max
𝑏∈{0,1}

Pr 𝑐0 = 𝑏 𝑟, SPC ,

where the conditioning on SPC is a reminder that 

there is an SPC constraint imposed on 𝑐.
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 Pr 𝑐0 = 0 𝑟, SPC
= Pr(𝑐1, 𝑐2, … , 𝑐𝑑−1 has an even no. of 1s|𝑟)

=
1

2
+

1

2
ς𝑙=1
𝑑−1(1 − 2Pr(𝑐𝑙 = 1|𝑟𝑙)).

 Rearranging gives

1 − 2Pr 𝑐0 = 1 𝑟, SPC =ෑ

𝑙=1

𝑑−1

(1 − 2Pr 𝑐𝑙 = 1 𝑟𝑙 ) ,

where we used 

Pr 𝑐0 = 1 𝑟, SPC = 1 − Pr 𝑐0 = 1 𝑟, SPC .
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 We can change this to an LLR representation using the easily 

proven relation for a generic binary random variable with 

probabilities 𝑝1 and 𝑝0,

1 − 2𝑝1 = tanh
1

2
log

𝑝0
𝑝1

= tanh
1

2
LLR ,

where LLR = log(𝑝0/𝑝1) and tanh 𝑥 =
𝑒2𝑥−1

𝑒2𝑥+1
is the  

hyperbolic tangent function.
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 Applying this relation to (1) gives

tanh
1

2
𝐿 𝑐0 𝑟, SPC =ෑ

𝑙=1

𝑑−1

tanh
1

2
𝐿 𝑐𝑙 𝑟𝑙

or

𝐿 𝑐0 𝑟, SPC = 2tanh−1 ς𝑙=1
𝑑−1 tanh

1

2
𝐿(𝑐𝑙|𝑟𝑙 .
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 The MAP decoder for bit 𝑐0 in a length-𝑑 SPC code makes the 

decision ෝ𝑐0 = 0 if 𝐿 𝑐0 𝑟, SPC ≥ 0 and ෝ𝑐0 = 1 otherwise.

 In the context of LDPC decoding, when the CNs function as 

APP processors instead of MAP decoders, CN 𝑖 computes the 

extrinsic information

𝐿𝑖→𝑗 = 2tanh−1 ෑ

𝑗′∈𝑁 𝑖 −{𝑗}

tanh
1

2
𝐿𝑗′→𝑖

and transmits it to VN 𝑗.
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 Because the product is over the set 𝑁 𝑖 − {𝑗}, the message 

𝐿𝑗→𝑖 has in effect been subtracted out to obtain the extrinsic 

information 𝐿𝑖→𝑗.
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 The Gallager SPA Decoder

 The information 𝐿𝑗→𝑖 that VN 𝑗 sends to CN 𝑖 at each iteration is 

the best (extrinsic) estimate of the value of 𝑣𝑗 (the sign bit of 

𝐿𝑗→𝑖) and the confidence or reliability level of that estimate (the 

magnitude of 𝐿𝑗→𝑖).

 This information is based on the REP constraint for VN 𝑗 and all 

inputs from the neighbors of VN 𝑗, excluding CN 𝑖.

75



 Similarly, the information 𝐿𝑖→𝑗 that CN 𝑖 sends to VN 𝑗 at each 

iteration is the best (extrinsic) estimate of the value of 𝑣𝑗 (sign 

bit of 𝐿𝑖→𝑗) and the confidence or reliability level of that estimate 

(magnitude of 𝐿𝑖→𝑗).

 This information is based on the SPC constraint for CN 𝑖 and all 

inputs from the neighbors of CN 𝑖 , excluding VN 𝑗.
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 The decoder is initialized by setting all VN messages equal to

𝐿𝑗= 𝐿 𝑣𝑗 𝑦𝑗 = log
Pr 𝑣𝑗 = 0 𝑦𝑗
Pr 𝑣𝑗 = 1 𝑦𝑗

= log
Pr 𝑦𝑗 𝑣𝑗 = 0

Pr 𝑦𝑗 𝑣𝑗 = 1

 As mentioned, the SPA assumes that the messages passed are 

statistically independent throughout the decoding process.
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 When the 𝑦𝑗 are independent, this independence assumption 

would hold true if the Tanner graph possessed no cycles. The 

SPA would yield exact LLRs in this case.

 For a graph of girth 𝛾, the independence assumption is true only 

up to the (𝛾/2)th iteration, after which messages start to loop 

back on themselves in the graph's various cycles.
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 𝐿 𝑣𝑗 𝑦𝑗 for Binary Symmetric Channel

 In this case, 𝑦𝑗 ∈ {0,1} and we define

𝜀 = Pr(𝑦𝑗 = 𝑏𝑐|𝑣𝑗 = 𝑏) to be the error probability.     

Then it is obvious that

Pr 𝑣𝑗 = 𝑏 𝑦𝑗 = ൝
1 − 𝜀 when 𝑦𝑗 = 𝑏,

𝜀 when 𝑦𝑗 = 𝑏𝑐

 𝐿 𝑣𝑗|𝑦𝑗 = (−1)𝑦𝑗log
1−𝜀

𝜀
.
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 𝐿 𝑣𝑗 𝑦𝑗 for Additive White Gaussian Noise Channel

 We only consider binary-input additive white Gaussian noise 

channel (BI-AWGNC)

 We first let 𝑥𝑗 = (−1)𝑣𝑗 be the 𝑗th transmitted binary value

 Note 𝑥𝑗 = +1 −1 when 𝑣𝑗 = 0(1). We shall use 𝑥𝑗 and 𝑣𝑗
interchangeably hereafter
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 The 𝑗th received sample is 𝑦𝑗 = 𝑥𝑗 +𝑛𝑗, where the 𝑛𝑗 are 

independent and normally distributed as 𝑁(0, 𝜎2). Then it is 

easy to show that 

Pr 𝑦𝑗 𝑥𝑗 = 𝑥 =
1

2𝜋𝜎2
exp −

(𝑦𝑗−𝑥)
2

2𝜎2
,

where 𝑥 ∈ −1,1 and, from this, that

𝐿 𝑣𝑗|𝑦𝑗 = 2𝑦𝑗/𝜎
2.

 In practice, an estimate of 𝜎2 is necessary.
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 The Gallager Sum-Product Algorithm

 1.Initialization : For all 𝑗, initialize 𝐿𝑗 for appropriate channel 

model. Then, for all 𝑖, 𝑗 for which ℎ𝑖𝑗 = 1, set 𝐿𝑗→𝑖 = 𝐿𝑗.

 2.CN update : Compute outgoing CN messages 𝐿𝑖→𝑗 for each 

CN using

𝐿𝑖→𝑗 = 2tanh−1 ෑ

𝑗′∈𝑁 𝑖 −{𝑗}

tanh
1

2
L𝑗′→𝑖

and then transmit to the VNs.
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 3.VN update : Compute outgoing VN messages 𝐿𝑗→𝑖 for each 

VN    using

𝐿𝑗→𝑖 = 𝐿𝑗 + ෍

𝑖′∈𝑁 𝑗 −{𝑖}

𝐿𝑖′→𝑗

and then transmit to the CNs.

 4.LLR total : For 𝑗 = 0,1,2, … , 𝑛 − 1 compute

𝐿𝑗
𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑗 + ෍

𝑖∈𝑁(𝑗)

𝐿𝑖→𝑗

83



 5.Stopping criteria : For 𝑗 = 0,1,2, … , 𝑛 − 1 , set

ෝ𝑣𝑗 = ൝
1 𝑖𝑓 𝐿𝑗

𝑡𝑜𝑡𝑎𝑙 < 0,

0 𝑒𝑙𝑠𝑒

to obtain ො𝑣. If ො𝑣𝑯𝑇 = 0 or the number of iteration 

equals the maximum limit, stop; else, go to Step 2.
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 Reduction on tanh and tanh−1 Functions

 The update equation (2) is numerically challenging due to the 

presence of the product and the tanh and tanh−1 functions.

 Following Gallager, we can improve the situation as follows. 

First, factor 𝐿𝑗→𝑖 into its sign and magnitude (or bit value and bit 

reliability):
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𝐿𝑗→𝑖 = 𝛼𝑗𝑖𝛽𝑗𝑖,

𝛼𝑗𝑖 = 𝑠𝑖𝑔𝑛(𝐿𝑗→𝑖),

𝛽𝑗𝑖 = 𝐿𝑗→𝑖 ,

such that

ෑ

𝑗′∈𝑁 𝑖 −{𝑗}

tanh(
1

2
𝐿𝑖→𝑗) = ෑ

𝑗′∈𝑁 𝑖 −{𝑗}

𝛼𝑗′𝑖 ෑ

𝑗′∈𝑁 𝑖 −{𝑗}

tanh(
1

2
𝛽𝑗′𝑖)
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 We then have

𝐿𝑖→𝑗

= ෑ

𝑗′∈𝑁(𝑖)−{𝑗}

𝛼𝑗′𝑖 ∙ 2𝑡𝑎𝑛ℎ
−1 ෑ

𝑗′∈𝑁 𝑖 − 𝑗

𝑡𝑎𝑛ℎ
1

2
𝛽𝑗′𝑖

= ෑ

𝑗′∈𝑁(𝑖)−{𝑗}

𝛼𝑗′𝑖 ∙ 2𝑡𝑎𝑛ℎ
−1𝑙𝑜𝑔−1𝑙𝑜𝑔 ෑ

𝑗′∈𝑁 𝑖 − 𝑗

𝑡𝑎𝑛ℎ
1

2
𝛽𝑗′𝑖

= ෑ

𝑗′∈𝑁(𝑖)−{𝑗}

𝛼𝑗′𝑖 ∙ 2𝑡𝑎𝑛ℎ
−1𝑙𝑜𝑔−1 ෍

𝑗′∈𝑁 𝑖 −{𝑗}

𝑙𝑜𝑔 𝑡𝑎𝑛ℎ
1

2
𝛽𝑗′𝑖
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 CN update : 

𝐿𝑖→𝑗 = ෑ

𝑗′∈𝑁 𝑖 −{𝑗}

𝛼𝑗′𝑖 ∙ 𝜙
−1 ෍

𝑗′∈𝑁 𝑖 −{𝑗}

𝜙 𝛽𝑗′𝑖

where we have defined

𝜙 𝑥 = − log tanh
𝑥

2
= 𝑙𝑜𝑔

𝑒𝑥 + 1

𝑒𝑥 − 1

and used the fact that 𝜙−1 𝑥 = 𝜙 𝑥 when 𝑥 > 0.
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