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Why channel coding?

BER
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What’s the performance limit?

BER
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What “A Mathematical Theory of Communication” Told Us in 1948:

e Associated with a communication channel - typically defined in probabilistic
terms - is a number called the capacity of the channel.

e Significance: If the capacity of a channel is C' bits, then:

— It is possible to convey information reliably over the channel at a rate of
up to C' bits per channel use. ( “Reliably” meaning with error rates as low
as you want them.)

— It is impossible to convey information reliably over the channel at rates
greater than C' bits per channel use.



Claude E. Shannon (1916-2001)
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e Examples of capacity:
— The capacity of a binary symmetric channel with crossover probability p is

Cgsc = 1 — h(p), where h(p) = —plogs(p) — (1 — p)loga(1 — p) is the
binary entropy function.
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Figure 1: Capacity of a binary symmetric channel as a function of the crossover probability.
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— The capacity of the complex-input additive white Gaussian noise channel
(with only a power constraint on the input) is C'axywen = logs(1 + SNR).

— For channels using particular signal constellations - e.g., QPSK, 16-QAM,
etc. - the capacity can be computed numerically based on the mutual
information between the channel’s input and output.

x If the 2-D signal constellation has M signals, then the capacity ap-
proaches logs(M ) bits/channel use at high SNR.
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Unfortunately:

e Shannon didn't tell us how to construct channel codes that obtain the per-
formance promised by his information theory results.

But he did give us these lessons:

e Good codes should have very long codewords.

e Good codes should appear random.
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Linear Block Codes



Introduction

A binary block code of length » with 2* codewords is called an (n. k)
linear block code iff its 2* codewords form a i dimensional subspace of the
vector space V' of all the n-tuples over GF(2).

For a binary (n, k) linear block code ', there exists /: linear independent
codewords go. g1, .. .. gr_1 Or basis such that every
codeword v in C'is a linear combination

of these £ linearly independent codewords.
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Let u = (ug, u1.....,up—1) be the message to be encoded. The codeword
v = (vg, v1,.... v,,—1 ) for this message is given by
vV =1upgo + u181 + - + Up—18k—1

g0
g1
= 1u =u-G
Bk—1
80 90,0 Jo.1 e 9Jo,n—1
g1 g1.,0 gi1.1 ‘ o g1,n—1
where G = _ —
8k—1 9k—1,0 Yk—11 --- Gk—1n—1

is a generator matrix of C.
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Then H is a generator matrix of ;.
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[Cyclic codesj

Let v = (v, v1.v2,,...,v,_1) be an n-tuple over GF(2).
If we shift every component of v cyclically one place to the right, we obtain
v = (v,,_1,v0,v1.....v,_2) Which is called right cyclic-shift of v.

An (n, k) linear block code C is said to be cyclic if the cyclic-shift of each
codeword in C is also a codeword in C.
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Polynomial representation

1. Code polunomial of v :
vX)=wvo+ 01 X + X2+ + o, (X1,

2. Inan (n, k) cyclic code C, there exists one and only one code polynomial
g(X) of dgree n — k of the following form
g(X)=1+nX + X+ 4 g X4 Xk
This unigque nonzero code polynomial g(.X') of minimum degree in C' is called
the generator polynomial of the (n, k) cyclic code C.

3. g(X) divides X" + 1. Consequently, X™ + 1 can be expressed as
X" 41 =g(X)f(X),where f(X) =1+ f1X +---+ fr 1 X1+ XF
Leth(X) = X*f(X 1) =1+h X +---+ hp_ X* 1 + X* be the reciprocal
polynomial of f(X'). Then
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1 ]?1 h—g hk—l 1 0 0

0 1 h-l ca hk_g fl;;_l 1 .o 0
H =

0 0O 0 ... 1 hi ho ... hr_1

iIs a PCM of the (n, k) cyclic code C. The polynomial h(X) is called the
parity-check polynomial of C'. In fact, h(X) is the generator polynomial of the
dual code, an (n,n — k) cyclic code, of the (n, k) cyclic code C.
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Low-Density Parity-Check Codes
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Introduction

1 Low-density parity-check (LDPC) codes are a class of
linear block codes which provide near-capacity
performance on many channels.

1 We only consider binary LDPC codes in this lecture.
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Introduction

O History:
» LDPC codes were invented by Gallager in his 1960 doctoral
dissertation.

» In 1981, Tanner generalized LDPC codes and introduced a
graphical representation of LDPC codes, now called a Tanner
graph.

» The study of LDPC codes was resurrected in the mid 1990s with
the work of MacKay, Luby, and others
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Introduction

1 Advantages over turbo codes:

>

YV V V

Do not require a long interleaver for near capacity
performances.

Lower error floor value.
More simple decoding architecture.
More flexible for code design.
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 Matrix Representation

» An LDPC code is a linear block code given by the null space of
an m X n parity-check matrix H that has a low density of 1's

» A density of 0.01 or lower can be called low density
« But no stringent restriction

» Aregular LDPC code is a linear block code whose H has
column weight g and row weight r, where r = g(n/m) and g <
m. Otherwise, it is an irregular LDPC code

25



» Almost all LDPC code constructions impose the following
additional structure property on H : no two rows(or two columns)
have more than one position in common that contains a nonzero
element. This is called row-column constraint (RC constraint).

» The low density aspect of LDPC codes accommodates iterative
decoding which has near-maximum-likelihood performance at
error rates of interest for many applications.

26



» The code rate R for a regular LDPC code is bounded as

R>1-2L=1-%2
n T

with equality when H is full rank.
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O Graphical Representation

» The Tanner graph of an LDPC code is analogous to the trellis of
a convolutional code.

» A Tanner graph is a bipartite graph whose nodes may be
separated into two types, with edges connecting only nodes of
different types.
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The two types in a Tanner graph are the variable nodes (VNSs)
(or code-bit nodes) and the check nodes(CNSs) (or constraint
nodes).

The Tanner graph of a code is drawn as follows: CN i is
connected to VN | whenever element h;; In H is a 1.

There are m CNs in a Tanner graph, one for each check
equation (row of H), and n VNs, one for each code bit (column
of H)

The allowable n-bit words represented by the n VNs are the
codewords in the code.
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W, =2,17 =

4, and the following H matrix:

» Example of Tanner Graph: A (10,5) code with g
WT'

0 0 0 0 0 0

1
1

1

1

1

I 0 0 O
1

1

0O 0 O
1
0

1

0
0

0 O 1

0 O

0
1

0 0 1
1

1

0 O 0

0 0 O

H =




A sequence of edges forms a closed path in a Tanner graph is
called a cycle.

Cycles force the decoder to operate locally in some portions of
the graph so that a globally optimal solution is impossible.

At high densities, many short cycles will exist, thus precluding
the use of an iterative decoder.

The length of a cycle is equal to the number of edges in the
cycle.
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The minimum cycle length in a given bipartite graph is called the
graph's girth.

The shortest possible cycle in a bipartite graph is a length-4
cycle.

Such cycles manifest themselves in the H matrix as four 1s that
lie on the four corners of a rectangular submatrix of H

RC constraint eliminates length-4 cycles
The number of edges in a Tanner graph is mr = ng
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O The original LDPC codes are random in the sense that
their parity-check matrices possess little structure.

1 Both encoding and decoding become quite complex
when the code possesses no structure beyond being a
linear code.

1 The nominal parity-check matrix H of a cyclic code is a
n X n circulant; that is, each row is a cyclic-shift of the
one above it, with the first row a cyclic-shift of the last
row.
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O The implication of a sparse circulant matrix H for LDPC
decoder complexity is substantial.

] Beside being regular, a drawback of cyclic LDPC codes
IS that the nominal H matrix is n X n, iIndependently of
the code rate, implying a more complex decoder.

 Another drawback is that the known cyclic LDPC codes
tend to have large row weights, which makes decoder
Implementation tricky.
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1 Quasi-cyclic (QC) codes also possess tremendous
structure, leading to simplified encoder and decoder
designs.

 They permit more flexibility in code design, particularly
Irregularity, and, hence, lead to improved codes relative
to cyclic LDPC codes.
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O The H matrix of a QC code is generally represented as
an array of circulants, e.g.,

Ayp o Agw
H=| : P,
Ayr  Aun

where each matrix A, Is a Q x Q circulant
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4 To affect irregularity, some of the circulants may be the
all-zeros Q x Q matrix using a technique called masking

4 For irregular LDPC codes, it is usual to specify the VN
and CN degree-distribution polynomials, denoted by
A(X) and p(X), respectively.

» In the polynomial,
dv d,

200 = ;Adxd-l p(X) = ) " paX?7]
A4(pg): the fraction of all edges connected to degree-d
VNs(CNs)

d,(d.): the maximum VN (CN) degree
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» For (2,4)-regular LDPC code, we have A(X) = X, p(X) = X3

» Let us denote the number of VNs (CNs) of degree d by
N, (d) (N, (d)). Let E denote the number of edges in the graph.
n

m
E=— =~ 1
[ A00dx [ p(0)dX
Eq i
N, (d) = =2 =
7 d  [1a)dX
Ep mc'?d
d
Ne(d) = —— =
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» The code rate R is bounded as

1
R>(1-0)=1 - 520%
n Jo AX)dX

The polynomials A(X) and p(X) represent a Tanner graph’s
degree

distributions from an “edge perspective”

» The degree distributions may also be represented from a “node

perspective” using the notation 1(X)(9(X)), where the coefficient
A4 (Dg) is the fraction of all VDs (CNs)that have degree d

7= N,(d) niq/d  Aq4/d
L= _ _
o onflAX)dx [ AX)dx
~ _  pda/d
Pa = o ax
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4 In addition to partitioning LDPC codes into three classes,
l.e., cyclic, quasi-cyclic, and random (but linear), the
LDPC code-construction techniques can be partitioned
as well
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d The first class of construction techniques can be
described as algorithmic or computer-based.
» The computer-based construction techniques can lead to either
random or structured LDPC codes.
O The second class of construction techniques consists of
those based on finite mathematics, including algebra,
combinatorics, and graph theory.

» The mathematical construction techniques generally lead to
structured LDPC codes, although exceptions exist.

41



Decoding Algorithm of LDPC Codes

1 Message Passing and the Turbo Principle

» The key innovation behind LDPC codes is the low-density
nature of the parity- check matrix, which facilitates iterative
decoding.

» Sum-product algorithm (SPA) is a general algorithm that
provides near-optimal performance across a broad class of
channels.

» Message-passing decoding refers to a collection of low-
complexity decoders working in a distributed fashion to decode
a received codeword in a concatenated coding scheme.
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» We can consider an LDPC code to be a generalized
concatenation of many single parity-check (SPC) codes.

» A message-passing decoder for an LDPC code employs an
individual decoder for each SPC code and these decoders

operate cooperatively in a distributed fashion to determine the
correct code bit values.
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» Message-passing decoding for a collection of constituent
decoders arranged in a graph is optimal provided that the graph
contains no cycles, but it is not optimal for graphs with cycles.

» Consider the figure in next slide, which depicts six soldiers in a
linear formation. The goal is for each of the soldiers to learn the
total number of soldiers present by counting in a distributed
fashion.
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» Consider (b). The message that an arbitrary soldier X passes to
arbitrary neighboring soldier Y is equal to the sum of all
Incoming messages, plus one for soldier X, minus the message
that soldier Y had just sent to soldier X

» This message-passing rule introduces the concept of extrinsic
information.
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» The idea is that a soldier does not pass to a neighboring soldier
any information that the neighboring soldier already has, that is,
only extrinsic information is passed.

» We say that soldier X passes to soldier Y only extrinsic
information, which may be computed as

Iy y = z I x —lyox +Ix
ZEN(X)

I x + Ix
ZEN(X)—{Y}
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where N(X) is the set of neighbors of soldier X, Ix_,y
IS the extrinsic information sent from solider X to
solider Y

» Iy is the “one" that a soldier counts for himself and Iy is called
the intrinsic information.

» Consider (c). There is a cycle and the situation is unstable.

» While most practical codes contain cycles, it is well known that
message-passing decoding performs very well for properly
designed codes for most error-rate ranges of interest
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» The notion of extrinsic-information passing described above has
been called the turbo principle in the context of the iterative
decoding of concatenated codes in communication channel.

» A depiction of the turbo principle is contained in next slide.
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O The Sum-Product Algorithm (SPA)

» We derive the sum-product algorithm for general memoryless
binary-input channels, applying the turbo principle in our
development.

» The optimality criterion underlying the development of the SPA
decoder is symbol-wise maximum a posteriori (MAP).
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» We are interested in computing the a posteriori probability
(APP) that a specific bit in the transmitted codeword

v = (Vg, V1, oe» Vp—1)

equals 1, given the received word

Y=o, Y1s s Yn-1)-
» Without loss of generality, we focus on the decoding of bit v;

and calculate Pr(v;|y).
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» The APP ratio and log-likelihood ratio (LRR) are

__ Pr(vj=0ly)
W) = 5z
and
Pr(v; = 0|y
) = on (G55
respectively.

» The natural logarithm is assumed for LLRs.
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» The SPA for the computation of Pr(v; =1 |y), f{v; | y), or L(v; |

y) Is a distributed algorithm that is an application of the turbo
principle to a code's Tanner graph.

» An LDPC code can be deemed a collection of SPC codes

concatenated through an interleaver to a collection of repetition
(REP) codes.
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» The SPC codes are treated as outer codes, that is, they are not
connected to the channel.

» The following is a graphical representation of an LDPC code as
a concatenation of SPC and REP codes. “[] " represents an
Interleaver.

AN A N A
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» The figure depicts the REP (VN) decoder .

» The VN j decoder receives LLR information both from the
channel and from its neighbors.
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» In the computation of the extrinsic information L;_,;, VN j need
not receive L;_,; from CN i since it would be subtracted out

anyway.
» The above figure depicts the SPC (CN) decoder situation.

58



» The VN and CN decoders work cooperatively and iteratively to
estimate L(v;|y) forj =0,1,..,n — 1.

A\

Assume that the flooding schedule is employed.

According to this schedule, all VNs process their inputs and
pass extrinsic information up to their neighboring CNs; the CNs
then process their inputs and pass extrinsic information down to
their neighboring VNs; and the procedure repeats, starting with
the VNs.

A\
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> After a preset maximum number of repetitions (or iterations) of
this VN/CN decoding round, or after some stopping criterion has
been met, the decoder computes (estimates) the LLRs L(v;|y)

from which decisions on the bits v; are made.

» When the cycles are large, the estimates will be very accurate
and the decoder will have near-optimal (MAP) performance.
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1 Repetition Code MAP Decoder and APP Processor

» At this point, we need to develop the detailed operations within
each constituent (CN and VN) decoder.

» Consider a REP code in which the binary code symbol ¢ € {0,1}

IS transmitted over a memoryless channel d times so that the d-
vector r is received.
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» The MAP decoder computes the log-APP ratio

P =0
i = TREZ00)
» which is equal to
Pr(r|c = 0)
L{clr) = log (Pr(rlc - 1))

» under an equally likely assumption for the value of c.
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» This simplifies as
[1&L Pr(r|c = 0)
L(c|r) = log( ;—0113 l 1
[1;:=¢ Pr(rnilc )

 wd- Pr(17|c = 0)
= 35 bog (e =)

= 2?2—01 L(rlc) = 2?2—01 L(c|r)
where L(r;|c) and L(c|r;) are obviously defined.

» The MAP receiver for a REP code computes the LLRs for each
channel output r; and adds them. The MAP decisionis ¢ = 0 if
L(c|r) = 0 and ¢ = 1 otherwise.
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> In the context of LDPC decoding, the above expression is
adapted to compute the extrinsic information to be sent from

VN jto CN i,
Lisi =1L+ Z Li’—>j
i'eN(H-{i}
» The quantity L; in this expression is the LLR value computed
from the channel sample y; ,
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» In the context of LDPC decoding, we call the VN an APP
processor instead of a MAP decoder. At the last iteration, VN j
produces a decision based on

L;Otal — L] + Z Li—>j
LEN(])
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d Single-Parity-Check Code MAP Decoder and APP
Processor

» To develop the MAP decoder for an SPC code we first need the
following result due to Gallager.
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» Consider a vector of d independent binary random variables a =
(ag, aq, ...,ag4—1) iINnwhich Pr(a; = 1) = (l) and Pr(a; = 0) = (l).
Then the probability that a contains an even number of 1s is

(z)
—+ 1—2
2 H Py

and the probability that a contains an odd number of

1’sIs
d—
l_lﬂ a)
2 2

=0
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» (Partial Proof)

» Assume that the above equations are true for d = k. Then the
probability that a contains an even number of Isford=k+1is

% 21_[ p®) ) (1-p) + 21_[ p®) |- p
s (1= 2017 (1 -217) - 217

+ l—[(k+1) 1(1 _ Zpg))

2

N |-
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» Consider the transmission of a length-d SPC codeword c over a
memoryless channel whose output is r.

» The bits ¢; in the codeword ¢ have a single constraint: there
must be an even number of 1s in c. Without loss of generality,
we focus on bit ¢y, for which the MAP decision rule is

Co = arg bren{%)i Pr(cy = b|r, SPC),

where the conditioning on SPC is a reminder that
there is an SPC constraint imposed on c.
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» Pr(cy = 0|r,SPC)
= Pr(cq, Cy, ..., c4—1 has an even no. of 1s|r)
1 14—
= -+ - I1{5 (1 — 2Pr(c; = 1|m)).
» Rearranging gives
d—1
1—2Pr(cy = 1|r,SPC) = (1 —-2Pr(c; = 1|ry)),
=1
where we used
Pr(c, = 1|r,SPC) =1 — Pr(cy = 1|r,SPC).
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» We can change this to an LLR representation using the easily
proven relation for a generic binary random variable with
probabilities p; and p,,

1 Do 1
1 — 2p,; = tanh Elog E = tanh ELLR )

e?X—1
e?*+1

where LLR = log(p,/p1) and tanh(x) = s the

hyperbolic tangent function.
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» Applying this relation to (1) gives
d-1

1 1
tanh (Z L(cylr, SPC)) = tanh (E L(c |7”1)>
4[_41L

or

L(co|r,SPC) = 2tanh™1 (Hfl:_ll tanh (%L(CIM)).

12



» The MAP decoder for bit ¢, in a length-d SPC code makes the
decision ¢, = 0 if L(cy|r,SPC) = 0 and ¢, = 1 otherwise.
> In the context of LDPC decoding, when the CNs function as

APP processors instead of MAP decoders, CN i computes the
extrinsic information

1
Li;= 2tanh‘1< 1—[ tanh (Ele—n'>>

J'eND-{J}
and transmits it to VN ;.

73



» Because the product is over the set N(i) — {j}, the message
L;_,; has in effect been subtracted out to obtain the extrinsic

information L;_,;.
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1 The Gallager SPA Decoder

» The information L;_,; that VN j sends to CN i at each iteration Is
the best (extrinsic) estimate of the value of v; (the sign bit of
L;_,;) and the confidence or reliability level of that estimate (the
magnitude of L;_,;).

» This information is based on the REP constraint for VN j and all
iInputs from the neighbors of VN j, excluding CN i.
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» Similarly, the information L;_,; that CN i sends to VN j at each
iteration is the best (extrinsic) estimate of the value of v; (sign
bit of L;_,;) and the confidence or reliability level of that estimate
(magnitude of L;_, ;).

» This information is based on the SPC constraint for CN i and all
inputs from the neighbors of CN i , excluding VN j.
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» The decoder is initialized by setting all VN messages equal to

Pr(vj = 0|3’f)>

Li= L(vj|y;) = 108(

oy 0
0 (PF(YJM = 1)>

» As mentioned, the SPA assumes that the messages passed are
statistically independent throughout the decoding process.

77



» When the y; are independent, this independence assumption
would hold true if the Tanner graph possessed no cycles. The
SPA would yield exact LLRs in this case.

» For a graph of girth y, the independence assumption is true only
up to the (y/2)th iteration, after which messages start to loop
back on themselves in the graph's various cycles.

78



Q L(v;|y;) for Binary Symmetric Channel
» Inthis case, y; € {0,1} and we define
¢ = Pr(y; = b°|v; = b) to be the error probability.
Then it is obvious that

1—¢ when y; = b,

Pr(v; = bly;) = £ when y; = b

> L(yly;) = (-1)¥1log (=),
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Q L(v;|y;) for Additive White Gaussian Noise Channel

» We only consider binary-input additive white Gaussian noise
channel (BI-AWGNC)

> We firstlet x; = (—1)"/ be the jth transmitted binary value

> Note x; = +1(—1) when v; = 0(1). We shall use x; and v;
iInterchangeably hereafter
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» The jth received sample is y; = x; +n;, where the n; are

independent and normally distributed as N(0,52%). Then it is
easy to show that

1 (y;—x)*
Pr(yj|xj = x) = N exp (— ]ZT>'

where x € {—1,1} and, from this, that

> In practice, an estimate of 2 is necessary.
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d The Gallager Sum-Product Algorithm

» Llinitialization : For all j, initialize L; for appropriate channel
model. Then, for all i, for which h;; =1, setL;_,; = L;.

» 2.CN update : Compute outgoing CN messages Li—>j for each
CN using

1
Li—>j = 2tanh™1 ( 1_[ tanh (E le—>i>>

j'eN(@®)-{j}
and then transmit to the VNSs.
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» 3.VN update : Compute outgoing VN messages L;_,; for each

VN using
Lj—)i = L] + Z Li’—)j

i’eN(j)—{i}
and then transmit to the CNs.
» 4.LLRtotal : Forj =0,1,2,..,n— 1 compute

L?Otal — L] + Z Li—>j
IEN(J)
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» 5.Stopping criteria: Forj=0,1,2,..,n—1, set
: total
7 = 1 if L;”"" <0,
0 else

to obtain 7. If DHT = 0 or the number of iteration
equals the maximum limit, stop; else, go to Step 2.
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d Reduction on tanh and tanh™! Functions

» The update equation (2) is numerically challenging due to the
presence of the product and the tanh and tanh™?! functions.

» Following Gallager, we can improve the situation as follows.
First, factor L;_,; into its sign and magnitude (or bit value and bit
reliability):
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Lisi = a;iBji,

(in = Sign(Lj_n-),

Bji = |Ljmil,
such that
1 1
1_[ tanh(ELi_U-)z 1_[ a;r; 1_[ tanh(iﬁj,i)
J'eN(@)-{j} J'eEN(D—{j} J'eN@)—{j}
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» We then have
Li—>j

1
= || % 2tanh™t ( tanh (Eﬁj’i>>
J'END—{)3 J'eN(@D-{j}

1
= ajr; - Ztanh‘llog_1l0g< 1_[ tanh (Z’Bj’l))

j'eN@-{j} J'eN (-1}

1
= 1_[ ajr; - 2tanh™tlog™? Z log (tanh (Eﬁj’i>>

j'eN(-{j} J'eN)—-{j}
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» CN update :

L= || a,-rl--sb‘l( > ¢(:8j’i)>

j'eNn()—{} j'eNn()—{}
where we have defined

X e*+1
¢(x) = —log [tanh (E)] = log (ex — 1)
and used the fact that ¢ = (x) = ¢(x) when x > 0.
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