
編碼理論與實驗

翁詠祿、謝欣霖、陳彥銘

Outline

Part I: Theory

 Introduction to channel coding theory

 Introduction to Linear Block Code

 Introduction to the theory of Low Density Parity Check

code (LDPC)

 Encoding and Decoding Algorithm of LDPC code

 Introduction to the theory of Polar Code

 Encoding and Decoding Algorithm of Polar code

2

Outline

Part II: Experiment

 Introduction to Matlab/Simulink

 Introduction to Zedboard

 Hamming code Enc / Dec experiment

 LDPC code Enc / Dec experiment

 Polar code Enc / Dec experiment

 QPSK transceiver experiment with Enc / Dec capability

3

Introduction to channel coding theory

Source
Source

Encoder

Channel

Encoder
Modulator

Channel

Demodulator
Channel

Decoder

Source

Decoder
Destination

4

Why channel coding?

SNR

BER

bP

2X 1X

5

BSC: P=0.1

6

What’s the performance limit?

SNR

BER

?

7

8

Claude E. Shannon (1916-2001)

9

10

11

12

Linear Block Codes

Introduction

14

15

16

17

18

19

Low-Density Parity-Check Codes

 Introduction

 Decoding Algorithm of LDPC Codes

 Classifications of LDPC Codes

 Analysis of LDPC Codes

 LDPC Codes in Practical System

Outline

21

Introduction

 Low-density parity-check (LDPC) codes are a class of

linear block codes which provide near-capacity

performance on many channels.

 We only consider binary LDPC codes in this lecture.

22

Introduction

 History:

 LDPC codes were invented by Gallager in his 1960 doctoral

dissertation.

 In 1981, Tanner generalized LDPC codes and introduced a

graphical representation of LDPC codes, now called a Tanner

graph.

 The study of LDPC codes was resurrected in the mid 1990s with

the work of MacKay, Luby, and others

23

Introduction

 Advantages over turbo codes:

 Do not require a long interleaver for near capacity

performances.

 Lower error floor value.

 More simple decoding architecture.

 More flexible for code design.

24

 Matrix Representation

 An LDPC code is a linear block code given by the null space of

an 𝑚 × 𝑛 parity-check matrix 𝑯 that has a low density of 1's

 A density of 0.01 or lower can be called low density

• But no stringent restriction

 A regular LDPC code is a linear block code whose 𝑯 has

column weight 𝑔 and row weight 𝑟, where 𝑟 = 𝑔(𝑛/𝑚) and 𝑔 ≪
𝑚. Otherwise, it is an irregular LDPC code

25

 Almost all LDPC code constructions impose the following

additional structure property on 𝑯 : no two rows(or two columns)

have more than one position in common that contains a nonzero

element. This is called row-column constraint (RC constraint).

 The low density aspect of LDPC codes accommodates iterative

decoding which has near-maximum-likelihood performance at

error rates of interest for many applications.

26

 The code rate R for a regular LDPC code is bounded as

𝑅 ≥ 1 −
𝑚

𝑛
= 1 −

𝑔

𝑟
,

with equality when 𝑯 is full rank.

27

 Graphical Representation

 The Tanner graph of an LDPC code is analogous to the trellis of

a convolutional code.

 A Tanner graph is a bipartite graph whose nodes may be

separated into two types, with edges connecting only nodes of

different types.

28

 The two types in a Tanner graph are the variable nodes (VNs)

(or code-bit nodes) and the check nodes(CNs) (or constraint

nodes).

 The Tanner graph of a code is drawn as follows: CN i is

connected to VN j whenever element ℎ𝑖𝑗 in 𝑯 is a 1.

 There are m CNs in a Tanner graph, one for each check

equation (row of 𝑯), and n VNs, one for each code bit (column

of 𝑯)

 The allowable n-bit words represented by the n VNs are the

codewords in the code.

29

 Example of Tanner Graph: A (10,5) code with 𝑔 = 𝑤𝑐 = 2, 𝑟 =
𝑤𝑟 = 4, and the following 𝑯 matrix:

𝐻 =

１ １ １ １ ０ ０ ０ ０ ０ ０

１ ０ ０ ０ １ １ １ ０ ０ ０

０ １ ０ ０ １ ０ ０ １ １ ０

０ ０ １ ０ ０ １ ０ １ ０ １

０ ０ ０ １ ０ ０ １ ０ １ １

.

30

 A sequence of edges forms a closed path in a Tanner graph is

called a cycle.

 Cycles force the decoder to operate locally in some portions of

the graph so that a globally optimal solution is impossible.

 At high densities, many short cycles will exist, thus precluding

the use of an iterative decoder.

 The length of a cycle is equal to the number of edges in the

cycle.

31

 The minimum cycle length in a given bipartite graph is called the

graph's girth.

 The shortest possible cycle in a bipartite graph is a length-4

cycle.

 Such cycles manifest themselves in the 𝑯 matrix as four 1s that

lie on the four corners of a rectangular submatrix of 𝑯

 RC constraint eliminates length-4 cycles

 The number of edges in a Tanner graph is 𝑚𝑟 = 𝑛𝑔

32

 The original LDPC codes are random in the sense that

their parity-check matrices possess little structure.

 Both encoding and decoding become quite complex

when the code possesses no structure beyond being a

linear code.

 The nominal parity-check matrix 𝑯 of a cyclic code is a

𝑛 × 𝑛 circulant; that is, each row is a cyclic-shift of the

one above it, with the first row a cyclic-shift of the last

row.

33

 The implication of a sparse circulant matrix 𝑯 for LDPC

decoder complexity is substantial.

 Beside being regular, a drawback of cyclic LDPC codes

is that the nominal 𝑯 matrix is 𝑛 × 𝑛, independently of

the code rate, implying a more complex decoder.

 Another drawback is that the known cyclic LDPC codes

tend to have large row weights, which makes decoder

implementation tricky.

34

 Quasi-cyclic (QC) codes also possess tremendous

structure, leading to simplified encoder and decoder

designs.

 They permit more flexibility in code design, particularly

irregularity, and, hence, lead to improved codes relative

to cyclic LDPC codes.

35

 The 𝑯 matrix of a QC code is generally represented as

an array of circulants, e.g.,

𝑯 =
𝐴11 ⋯ 𝐴1𝑁
⋮ ⋱ ⋮

𝐴𝑀1 ⋯ 𝐴𝑀𝑁

,

where each matrix 𝐴𝑟𝑐 is a 𝑄 × 𝑄 circulant

36

 To affect irregularity, some of the circulants may be the

all-zeros 𝑄 × 𝑄 matrix using a technique called masking

 For irregular LDPC codes, it is usual to specify the 𝑉𝑁
and 𝐶𝑁 degree-distribution polynomials, denoted by

𝜆(X) and 𝜌(𝑋), respectively.

 In the polynomial,

𝜆(X) =

d=1

dv

𝜆𝑑𝑋
𝑑−1 [𝜌(𝑋) =

𝑑=1

𝑑𝑐
𝜌𝑑𝑋

𝑑−1]

𝜆d(𝜌d): the fraction of all edges connected to degree-𝑑

𝑉𝑁𝑠(𝐶𝑁𝑠)

𝑑𝑣(𝑑𝑐): the maximum 𝑉𝑁(𝐶𝑁) degree

37

 For (2,4)-regular LDPC code, we have 𝜆 X = X, 𝜌 X = X3

 Let us denote the number of 𝑉𝑁𝑠 (𝐶𝑁𝑠) of degree d by

𝑁𝑣 (𝑑) (𝑁𝑐 (𝑑)). Let 𝐸 denote the number of edges in the graph.

𝐸 =
𝑛

0
1
𝜆 𝑋 𝑑𝑋

=
𝑚

0
1
𝜌 𝑋 𝑑𝑋

𝑁𝑣 (𝑑) =
𝐸𝜆𝑑
𝑑

=

𝑛𝜆𝑑
𝑑

0
1
𝜆 𝑋 𝑑𝑋

𝑁𝑐 (𝑑) =
𝐸𝜌𝑑
𝑑

=

𝑚𝜌𝑑
𝑑

0
1
𝜌 𝑋 𝑑𝑋

38

 The code rate R is bounded as

𝑅 ≥ 1 −
𝑚

𝑛
= 1 −

0
1
𝜌 𝑋 𝑑𝑋

0
1
𝜆 𝑋 𝑑𝑋

The polynomials 𝜆(X) and 𝜌(𝑋) represent a Tanner graph’s

degree

distributions from an “edge perspective”

 The degree distributions may also be represented from a “node

perspective” using the notation ሚ𝜆 X (𝜌(X)), where the coefficient
ሚ𝜆𝑑 (𝜌𝑑) is the fraction of all 𝑉𝐷𝑠 (𝐶𝑁𝑠)that have degree 𝑑

ሚ𝜆𝑑 =
𝑁𝑣(𝑑)

𝑛
=

Τ𝑛𝜆𝑑 𝑑

𝑛 0
1
𝜆(𝑋) 𝑑𝑥

=
Τ𝜆𝑑 𝑑

0
1
𝜆(𝑋) 𝑑𝑥

𝜌𝑑 =
Τ𝜌𝑑 𝑑

0
1
𝜌(𝑋) 𝑑𝑥

39

 In addition to partitioning LDPC codes into three classes,

i.e., cyclic, quasi-cyclic, and random (but linear), the

LDPC code-construction techniques can be partitioned

as well

40

 The first class of construction techniques can be

described as algorithmic or computer-based.

 The computer-based construction techniques can lead to either

random or structured LDPC codes.

 The second class of construction techniques consists of

those based on finite mathematics, including algebra,

combinatorics, and graph theory.

 The mathematical construction techniques generally lead to

structured LDPC codes, although exceptions exist.

41

Decoding Algorithm of LDPC Codes

 Message Passing and the Turbo Principle

 The key innovation behind LDPC codes is the low-density

nature of the parity- check matrix, which facilitates iterative

decoding.

 Sum-product algorithm (SPA) is a general algorithm that

provides near-optimal performance across a broad class of

channels.

 Message-passing decoding refers to a collection of low-

complexity decoders working in a distributed fashion to decode

a received codeword in a concatenated coding scheme.

42

 We can consider an LDPC code to be a generalized

concatenation of many single parity-check (SPC) codes.

 A message-passing decoder for an LDPC code employs an

individual decoder for each SPC code and these decoders

operate cooperatively in a distributed fashion to determine the

correct code bit values.

43

 Example: (3,2) × (3,2) SPC product code as an LDPC code

44

 Message-passing decoding for a collection of constituent

decoders arranged in a graph is optimal provided that the graph

contains no cycles, but it is not optimal for graphs with cycles.

 Consider the figure in next slide, which depicts six soldiers in a

linear formation. The goal is for each of the soldiers to learn the

total number of soldiers present by counting in a distributed

fashion.

45

Distributed soldier counting. (a) Soldiers in a line. (b)

Soldiers in a tree formation. (c) Soldiers in a formation

containing a cycle
46

 Consider (b). The message that an arbitrary soldier 𝑋 passes to

arbitrary neighboring soldier 𝑌 is equal to the sum of all

incoming messages, plus one for soldier 𝑋, minus the message

that soldier 𝑌 had just sent to soldier 𝑋

 This message-passing rule introduces the concept of extrinsic

information.

47

 The idea is that a soldier does not pass to a neighboring soldier

any information that the neighboring soldier already has, that is,

only extrinsic information is passed.

 We say that soldier 𝑋 passes to soldier 𝑌 only extrinsic

information, which may be computed as

𝐼𝑋→𝑌 =

𝑍∈𝑁 𝑋

𝐼𝑍→𝑋 − 𝐼𝑌→𝑋 + 𝐼𝑋

=

𝑍∈𝑁 𝑋 −{𝑌}

𝐼𝑍→𝑋 + 𝐼𝑋

48

where 𝑁(𝑋) is the set of neighbors of soldier 𝑋, 𝐼𝑋→𝑌
is the extrinsic information sent from solider 𝑋 to

solider 𝑌

 𝐼𝑋 is the “one" that a soldier counts for himself and 𝐼𝑋 is called

the intrinsic information.

 Consider (c). There is a cycle and the situation is unstable.

 While most practical codes contain cycles, it is well known that

message-passing decoding performs very well for properly

designed codes for most error-rate ranges of interest

49

 The notion of extrinsic-information passing described above has

been called the turbo principle in the context of the iterative

decoding of concatenated codes in communication channel.

 A depiction of the turbo principle is contained in next slide.

50

51

 The Sum-Product Algorithm (SPA)

 We derive the sum-product algorithm for general memoryless

binary-input channels, applying the turbo principle in our

development.

 The optimality criterion underlying the development of the SPA

decoder is symbol-wise maximum a posteriori (MAP).

52

 We are interested in computing the a posteriori probability

(APP) that a specific bit in the transmitted codeword

𝑣 = (𝑣0, 𝑣1, … , 𝑣𝑛−1)

equals 1, given the received word

𝑦 = (𝑦0, 𝑦1, … , 𝑦𝑛−1).

 Without loss of generality, we focus on the decoding of bit 𝑣𝑗

and calculate Pr(𝑣𝑗|𝑦).

53

 The APP ratio and log-likelihood ratio (LRR) are

ℓ 𝑣𝑗 𝑦) =
Pr(𝑣𝑗=0|𝑦)

Pr(𝑣𝑗=1|𝑦)

and

L 𝑣𝑗 𝑦) = log
Pr 𝑣𝑗 = 0 𝑦

Pr 𝑣𝑗 = 1 𝑦

respectively.

 The natural logarithm is assumed for LLRs.

54

 The SPA for the computation of Pr(𝑣𝑗 = 1 | y), ℓ(𝑣𝑗 | y), or L(𝑣𝑗 |

y) is a distributed algorithm that is an application of the turbo

principle to a code's Tanner graph.

 An LDPC code can be deemed a collection of SPC codes

concatenated through an interleaver to a collection of repetition

(REP) codes.

55

 The SPC codes are treated as outer codes, that is, they are not

connected to the channel.

 The following is a graphical representation of an LDPC code as

a concatenation of SPC and REP codes. “ς" represents an

interleaver.

56

 The figure depicts the REP (VN) decoder .

 The VN j decoder receives LLR information both from the

channel and from its neighbors.

57

 In the computation of the extrinsic information 𝐿𝑗→𝑖, VN 𝑗 need

not receive 𝐿𝑖→𝑗 from CN 𝑖 since it would be subtracted out

anyway.

 The above figure depicts the SPC (CN) decoder situation.

58

 The VN and CN decoders work cooperatively and iteratively to

estimate 𝐿 𝑣𝑗 𝑦 for 𝑗 = 0,1, … , 𝑛 − 1.

 Assume that the flooding schedule is employed.

 According to this schedule, all VNs process their inputs and

pass extrinsic information up to their neighboring CNs; the CNs

then process their inputs and pass extrinsic information down to

their neighboring VNs; and the procedure repeats, starting with

the VNs.

59

 After a preset maximum number of repetitions (or iterations) of

this VN/CN decoding round, or after some stopping criterion has

been met, the decoder computes (estimates) the LLRs 𝐿(𝑣𝑗|y)

from which decisions on the bits 𝑣𝑗 are made.

 When the cycles are large, the estimates will be very accurate

and the decoder will have near-optimal (MAP) performance.

60

 Repetition Code MAP Decoder and APP Processor

 At this point, we need to develop the detailed operations within

each constituent (CN and VN) decoder.

 Consider a REP code in which the binary code symbol 𝑐 ∈ {0,1}
is transmitted over a memoryless channel 𝑑 times so that the 𝑑-

vector 𝑟 is received.

61

 The MAP decoder computes the log-APP ratio

L 𝑐 𝑟) = log
Pr 𝑐 = 0 𝑟

Pr 𝑐 = 1 𝑟

 which is equal to

L 𝑐 𝑟) = log
Pr 𝑟 𝑐 = 0

Pr 𝑟 𝑐 = 1

 under an equally likely assumption for the value of c.

62

 This simplifies as

L 𝑐 𝑟) = log
ς𝑙=0
𝑑−1Pr(𝑟𝑙|𝑐 = 0)

ς𝑙=0
𝑑−1Pr(𝑟𝑙|𝑐 = 1)

= σ𝑙=0
𝑑−1 𝑙𝑜𝑔

Pr 𝑟𝑙 𝑐 = 0
Pr 𝑟𝑙 𝑐 = 1

= σ𝑙=0
𝑑−1 𝐿(𝑟𝑙 𝑐 = σ𝑙=0

𝑑−1 𝐿(𝑐 𝑟𝑙

where 𝐿 𝑟𝑙 𝑐 and 𝐿(𝑐|𝑟𝑙) are obviously defined.

 The MAP receiver for a REP code computes the LLRs for each

channel output 𝑟𝑙 and adds them. The MAP decision is Ƹ𝑐 = 0 if

𝐿 𝑐 𝑟 ≥ 0 and Ƹ𝑐 = 1 otherwise.

63

 In the context of LDPC decoding, the above expression is

adapted to compute the extrinsic information to be sent from

VN 𝑗 to CN 𝑖,

𝐿𝑗→𝑖 = 𝐿𝑖 +

𝑖′∈𝑁 𝑗 −{𝑖}

𝐿𝑖′→𝑗

 The quantity 𝐿𝑗 in this expression is the LLR value computed

from the channel sample 𝑦𝑖 ,

𝐿𝑗 = 𝐿(𝑐𝑗|𝑦𝑗).

64

 In the context of LDPC decoding, we call the VN an APP

processor instead of a MAP decoder. At the last iteration, VN 𝑗
produces a decision based on

𝐿𝑗
total = 𝐿𝑗 +

𝑖∈𝑁(𝑗)

𝐿𝑖→𝑗

65

 Single-Parity-Check Code MAP Decoder and APP

Processor

 To develop the MAP decoder for an SPC code we first need the

following result due to Gallager.

66

 Consider a vector of d independent binary random variables 𝑎 =

𝑎0, 𝑎1, … , 𝑎𝑑−1 in which Pr 𝑎𝑙 = 1 = 𝑝1
(𝑙)

and Pr 𝑎𝑙 = 0 = 𝑝0
(𝑙)

.

Then the probability that a contains an even number of 1s is

1

2
+
1

2
ෑ

𝑙=0

𝑑−1

1 − 2𝑝1
(𝑙)

and the probability that 𝑎 contains an odd number of

1’s is

1

2
−
1

2
ෑ

𝑙=0

𝑑−1

1 − 2𝑝1
(𝑙)

67

 (Partial Proof)

 Assume that the above equations are true for 𝑑 = 𝑘. Then the

probability that a contains an even number of 1s for 𝑑 = 𝑘 + 1 is

1

2
+
1

2
ෑ

𝑙=0

𝑘−1

1 − 2𝑝1
𝑙

1 − 𝑝1
𝑘

+
1

2
−
1

2
ෑ

𝑙=0

𝑘−1

1 − 2𝑝1
𝑙

∙ 𝑝1
𝑘

=
1

2
+

1

2
ς𝑙=0
𝑘−1 1 − 2𝑝1

𝑙
1 − 𝑝1

𝑘
− 𝑝1

(𝑘)

=
1

2
+

1

2
ς𝑙=0

𝑘+1 −1
(1 − 2𝑝1

𝑙
)

68

 Consider the transmission of a length-𝑑 SPC codeword 𝑐 over a

memoryless channel whose output is 𝒓.

 The bits 𝑐𝑙 in the codeword 𝑐 have a single constraint: there

must be an even number of 1s in 𝑐. Without loss of generality,

we focus on bit 𝑐0, for which the MAP decision rule is

ෝ𝑐0 = arg max
𝑏∈{0,1}

Pr 𝑐0 = 𝑏 𝑟, SPC ,

where the conditioning on SPC is a reminder that

there is an SPC constraint imposed on 𝑐.

69

 Pr 𝑐0 = 0 𝑟, SPC
= Pr(𝑐1, 𝑐2, … , 𝑐𝑑−1 has an even no. of 1s|𝑟)

=
1

2
+

1

2
ς𝑙=1
𝑑−1(1 − 2Pr(𝑐𝑙 = 1|𝑟𝑙)).

 Rearranging gives

1 − 2Pr 𝑐0 = 1 𝑟, SPC =ෑ

𝑙=1

𝑑−1

(1 − 2Pr 𝑐𝑙 = 1 𝑟𝑙) ,

where we used

Pr 𝑐0 = 1 𝑟, SPC = 1 − Pr 𝑐0 = 1 𝑟, SPC .

70

 We can change this to an LLR representation using the easily

proven relation for a generic binary random variable with

probabilities 𝑝1 and 𝑝0,

1 − 2𝑝1 = tanh
1

2
log

𝑝0
𝑝1

= tanh
1

2
LLR ,

where LLR = log(𝑝0/𝑝1) and tanh 𝑥 =
𝑒2𝑥−1

𝑒2𝑥+1
is the

hyperbolic tangent function.

71

 Applying this relation to (1) gives

tanh
1

2
𝐿 𝑐0 𝑟, SPC =ෑ

𝑙=1

𝑑−1

tanh
1

2
𝐿 𝑐𝑙 𝑟𝑙

or

𝐿 𝑐0 𝑟, SPC = 2tanh−1 ς𝑙=1
𝑑−1 tanh

1

2
𝐿(𝑐𝑙|𝑟𝑙 .

72

 The MAP decoder for bit 𝑐0 in a length-𝑑 SPC code makes the

decision ෝ𝑐0 = 0 if 𝐿 𝑐0 𝑟, SPC ≥ 0 and ෝ𝑐0 = 1 otherwise.

 In the context of LDPC decoding, when the CNs function as

APP processors instead of MAP decoders, CN 𝑖 computes the

extrinsic information

𝐿𝑖→𝑗 = 2tanh−1 ෑ

𝑗′∈𝑁 𝑖 −{𝑗}

tanh
1

2
𝐿𝑗′→𝑖

and transmits it to VN 𝑗.

73

 Because the product is over the set 𝑁 𝑖 − {𝑗}, the message

𝐿𝑗→𝑖 has in effect been subtracted out to obtain the extrinsic

information 𝐿𝑖→𝑗.

74

 The Gallager SPA Decoder

 The information 𝐿𝑗→𝑖 that VN 𝑗 sends to CN 𝑖 at each iteration is

the best (extrinsic) estimate of the value of 𝑣𝑗 (the sign bit of

𝐿𝑗→𝑖) and the confidence or reliability level of that estimate (the

magnitude of 𝐿𝑗→𝑖).

 This information is based on the REP constraint for VN 𝑗 and all

inputs from the neighbors of VN 𝑗, excluding CN 𝑖.

75

 Similarly, the information 𝐿𝑖→𝑗 that CN 𝑖 sends to VN 𝑗 at each

iteration is the best (extrinsic) estimate of the value of 𝑣𝑗 (sign

bit of 𝐿𝑖→𝑗) and the confidence or reliability level of that estimate

(magnitude of 𝐿𝑖→𝑗).

 This information is based on the SPC constraint for CN 𝑖 and all

inputs from the neighbors of CN 𝑖 , excluding VN 𝑗.

76

 The decoder is initialized by setting all VN messages equal to

𝐿𝑗= 𝐿 𝑣𝑗 𝑦𝑗 = log
Pr 𝑣𝑗 = 0 𝑦𝑗
Pr 𝑣𝑗 = 1 𝑦𝑗

= log
Pr 𝑦𝑗 𝑣𝑗 = 0

Pr 𝑦𝑗 𝑣𝑗 = 1

 As mentioned, the SPA assumes that the messages passed are

statistically independent throughout the decoding process.

77

 When the 𝑦𝑗 are independent, this independence assumption

would hold true if the Tanner graph possessed no cycles. The

SPA would yield exact LLRs in this case.

 For a graph of girth 𝛾, the independence assumption is true only

up to the (𝛾/2)th iteration, after which messages start to loop

back on themselves in the graph's various cycles.

78

 𝐿 𝑣𝑗 𝑦𝑗 for Binary Symmetric Channel

 In this case, 𝑦𝑗 ∈ {0,1} and we define

𝜀 = Pr(𝑦𝑗 = 𝑏𝑐|𝑣𝑗 = 𝑏) to be the error probability.

Then it is obvious that

Pr 𝑣𝑗 = 𝑏 𝑦𝑗 = ൝
1 − 𝜀 when 𝑦𝑗 = 𝑏,

𝜀 when 𝑦𝑗 = 𝑏𝑐

 𝐿 𝑣𝑗|𝑦𝑗 = (−1)𝑦𝑗log
1−𝜀

𝜀
.

79

 𝐿 𝑣𝑗 𝑦𝑗 for Additive White Gaussian Noise Channel

 We only consider binary-input additive white Gaussian noise

channel (BI-AWGNC)

 We first let 𝑥𝑗 = (−1)𝑣𝑗 be the 𝑗th transmitted binary value

 Note 𝑥𝑗 = +1 −1 when 𝑣𝑗 = 0(1). We shall use 𝑥𝑗 and 𝑣𝑗
interchangeably hereafter

80

 The 𝑗th received sample is 𝑦𝑗 = 𝑥𝑗 +𝑛𝑗, where the 𝑛𝑗 are

independent and normally distributed as 𝑁(0, 𝜎2). Then it is

easy to show that

Pr 𝑦𝑗 𝑥𝑗 = 𝑥 =
1

2𝜋𝜎2
exp −

(𝑦𝑗−𝑥)
2

2𝜎2
,

where 𝑥 ∈ −1,1 and, from this, that

𝐿 𝑣𝑗|𝑦𝑗 = 2𝑦𝑗/𝜎
2.

 In practice, an estimate of 𝜎2 is necessary.

81

 The Gallager Sum-Product Algorithm

 1.Initialization : For all 𝑗, initialize 𝐿𝑗 for appropriate channel

model. Then, for all 𝑖, 𝑗 for which ℎ𝑖𝑗 = 1, set 𝐿𝑗→𝑖 = 𝐿𝑗.

 2.CN update : Compute outgoing CN messages 𝐿𝑖→𝑗 for each

CN using

𝐿𝑖→𝑗 = 2tanh−1 ෑ

𝑗′∈𝑁 𝑖 −{𝑗}

tanh
1

2
L𝑗′→𝑖

and then transmit to the VNs.

82

 3.VN update : Compute outgoing VN messages 𝐿𝑗→𝑖 for each

VN using

𝐿𝑗→𝑖 = 𝐿𝑗 +

𝑖′∈𝑁 𝑗 −{𝑖}

𝐿𝑖′→𝑗

and then transmit to the CNs.

 4.LLR total : For 𝑗 = 0,1,2, … , 𝑛 − 1 compute

𝐿𝑗
𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑗 +

𝑖∈𝑁(𝑗)

𝐿𝑖→𝑗

83

 5.Stopping criteria : For 𝑗 = 0,1,2, … , 𝑛 − 1 , set

ෝ𝑣𝑗 = ൝
1 𝑖𝑓 𝐿𝑗

𝑡𝑜𝑡𝑎𝑙 < 0,

0 𝑒𝑙𝑠𝑒

to obtain ො𝑣. If ො𝑣𝑯𝑇 = 0 or the number of iteration

equals the maximum limit, stop; else, go to Step 2.

84

 Reduction on tanh and tanh−1 Functions

 The update equation (2) is numerically challenging due to the

presence of the product and the tanh and tanh−1 functions.

 Following Gallager, we can improve the situation as follows.

First, factor 𝐿𝑗→𝑖 into its sign and magnitude (or bit value and bit

reliability):

85

𝐿𝑗→𝑖 = 𝛼𝑗𝑖𝛽𝑗𝑖,

𝛼𝑗𝑖 = 𝑠𝑖𝑔𝑛(𝐿𝑗→𝑖),

𝛽𝑗𝑖 = 𝐿𝑗→𝑖 ,

such that

ෑ

𝑗′∈𝑁 𝑖 −{𝑗}

tanh(
1

2
𝐿𝑖→𝑗) = ෑ

𝑗′∈𝑁 𝑖 −{𝑗}

𝛼𝑗′𝑖 ෑ

𝑗′∈𝑁 𝑖 −{𝑗}

tanh(
1

2
𝛽𝑗′𝑖)

86

 We then have

𝐿𝑖→𝑗

= ෑ

𝑗′∈𝑁(𝑖)−{𝑗}

𝛼𝑗′𝑖 ∙ 2𝑡𝑎𝑛ℎ
−1 ෑ

𝑗′∈𝑁 𝑖 − 𝑗

𝑡𝑎𝑛ℎ
1

2
𝛽𝑗′𝑖

= ෑ

𝑗′∈𝑁(𝑖)−{𝑗}

𝛼𝑗′𝑖 ∙ 2𝑡𝑎𝑛ℎ
−1𝑙𝑜𝑔−1𝑙𝑜𝑔 ෑ

𝑗′∈𝑁 𝑖 − 𝑗

𝑡𝑎𝑛ℎ
1

2
𝛽𝑗′𝑖

= ෑ

𝑗′∈𝑁(𝑖)−{𝑗}

𝛼𝑗′𝑖 ∙ 2𝑡𝑎𝑛ℎ
−1𝑙𝑜𝑔−1

𝑗′∈𝑁 𝑖 −{𝑗}

𝑙𝑜𝑔 𝑡𝑎𝑛ℎ
1

2
𝛽𝑗′𝑖

87

 CN update :

𝐿𝑖→𝑗 = ෑ

𝑗′∈𝑁 𝑖 −{𝑗}

𝛼𝑗′𝑖 ∙ 𝜙
−1

𝑗′∈𝑁 𝑖 −{𝑗}

𝜙 𝛽𝑗′𝑖

where we have defined

𝜙 𝑥 = − log tanh
𝑥

2
= 𝑙𝑜𝑔

𝑒𝑥 + 1

𝑒𝑥 − 1

and used the fact that 𝜙−1 𝑥 = 𝜙 𝑥 when 𝑥 > 0.

88

