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1. Introduction

 The fundamentals of precoding (beamforming) are the

regardless of carrier frequency.

 Signal processing in mmWave massive MIMO systems needs to

be subject to a practical constraints.

 For the traditional analog beamforming with small RF chains:

 Analog circuit with phase shifter (PS) network

 Constant amplitude constraints

 Suffering the performance loss (Interference Problems)

 For the digital precoding with large antennas and RF chains:

 High cost and energy consumption (large number of RF chains)
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Introduction

 Controlling both phase and amplitude to cancel interferences and

achieve the optimal performance.

 For the hybrid analog and digital precoding:

 Small RF chains with small digital precoder to cancel

interferences.

 Large analog beamformer with large PS to increase the antenna

array gain.

 Significantly reducing the RF chains without obvious

performance loss.
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2. Channel Model for mmWave Massive  

MIMO

 High free-space path loss is a characteristic of mmWave

propagation.

 Limitted spatial selectivity or scattering.

 Large tightly packed antenna arrays are characteristics of

mmWave transceivers.

 High levels of antenna correlation.

 Characteristics in mmWave channels.

 Sparse scattering channel

 Adopting a narrowband clustered channel representation, based

on the extended Saleh-Valenzuela model.
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Channel Model for mmWave Massive  

MIMO

 Using the clustered channel model, the discrete-time channel

matrix H can be expressed by a sum of the L propagation paths,

i.e.,
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 For the uniform linear array (ULA) with N elements, the

normalized array response vector:

 For the uniform planar array (UPA) with W1 and W2 elements

(W1 W2 =N), the normalized array response vector:

1 2where 0 1(horizontal) and 0 1(vertical)x W y W     

Channel Model for mmWave Massive  

MIMO



3. Digital Precoding (DP)

 DP can control “phases and amplitudes” of original signals to

cancel interferences.

 Two categories of DP:

 Linear precoding: TX signals with the linear combination of

the original signals.

 Nonlinear precoding: TX signals with the nonlinear processing.

 Two system used by DP techniques:

 Single-user precoding system: Matched Filter (MF) and Zero-

Forcing (ZF) precoding.

 Multiuser precoding system: Block diagonalization (BD)

precoding.
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3.1 Single-User Digital Precoding

 Architecture of DP for single-user mmWave massive MIMO

system:

 Consider Nt TX antennas, Nr RX antennas, Nr data streams (Nr

< Nt), the TX signal with Nt  Nr DP D matrix:
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Single-User Digital Precoding

 Under the narrowband system, the RX signal vector :
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Single-User Digital Precoding

 The simplest linear digital precoding: MF precoding

 MF can maximize the SNR at user side.

 MF involves severe interferences among different data streams.

 The well-known linear digital precoding: ZF precoding
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Single-User Digital Precoding

 ZF can entirely eliminate the interferences among different data

streams.

 D required to satisfy the total TX power constraint. ZF

precoding may enhance the power of noise and lead performance

loss.

 The Wiener filter (WF) precoding: WF precoding (or MMSE

precoding)

‥ WF precoding can make a better trade-off between the RX

SNR and interferences.
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3.2 Multiuser Digital Precoding

 Architecture of digital precoding for multiuser mmWave

massive MIMO Systems.

 Consider BS with NBS antennas and RF chains.

 Communicate with U MSs, each MS with NMS antennas.

 Total data streams is NMSU (NMSU ≤ NBS)
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 For downlink communication, BS employs U digital precoders,

i.e., D=[D1 D2 … DU], where Du is the NBSNMS precoder for

the uth user.

 DU satisfying the total TX power constraint 𝐃𝑢 𝐹 = NMS

 Considering the narrowband block-fading channel, the RX

signal vector 𝐫𝑢 of the uth MS:
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Multiuser Digital Precoding
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Multiuser Digital Precoding

 The terms                           are interferences to the uth MS.

 Design the BD precoding to satisfy                (Nulling)

 is designed to lie in the null space of      , 

 The digital precoder of  the uth MS is (first NMS columns      

of        ) 
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 Note: The optimal DPC and the near-optimal Tomlinson-

Harashima (TH) precoding involve high computational

complexity.
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4. Analog Beamforming

 Analog beamforming is developed in point-to-point mmWave

systems with large antenna arrays.

 Only one RF chain

 TX a single data stream

 Control the phases of original signals to achieve the maximum 

antenna array gain and effective SNR.

 The widely used analog beamforming scheme:

 Beam steering

 To obtain the best analog beamforming vectors:

 Beam training schemes
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4.1 Beam Steering

 Architecture of analog beamforming for single-user mmWave

massive MIMO Systems.

 Nt TX antennas, Nr RX antennas, only one RF chain to TX one 

data stream.
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Beam Steering

 Define         as BS anlaog beamforming vector,          as user 

analog combining vector.    

 Design     and      to maximize the effective SNR:    

 For the optimal solution (unconstraint):
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Beam Steering

 Design the practical solutions and satisfying the amplitude

constraint to be close to the optimal unconstraint solutions

and .

 Each right singular vector of H with L=o(Nt) converges in

chordal distance to an array response vector .

 Each left singular vector of H with L=o(Nr) converges in chordal

distance to an array response vector .

 Singular values converge to .

 In other words, we can select
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4.2 Beam Training 

 For the above beam steering, we need to know the perfect CSI

 Impractical in the realistic systems due to only one RF chain

 It observes a noisy version of the effective channel of smaller

size.

 For the no full CSI, using the subspace sampling for beam

training to find the and .

 BS and User collaborate to search the best beamformer and

combiner pair from the predefined codebooks during the beam

training.
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Beam Training

 The different codebook sizes are designed based on the beam

steering scheme:

 It can uniformly cover the whole range of AoDs/AoAs.
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Beam Training

 For the optimal beam training scheme:

 It is to exhaustively search all possible |F| |W| pairs of

beamforming and combining based on the maximized SNR

criterion.

 It cannot be affordable due to very large |F| and |W| .

 For the hierarchical beam training scheme: (reducing the

overhead of the exhaustive search)

 (1) Construct a series of codebooks

with the increasing resolution.
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Beam Training

 (2) At the first level (lowest resolution codebook F1), beam

sweep at BS side (MS only RX and find the index of selected

beamforming)

 (3) Swap their roles and beam sweep at user side to find the best

beamforming index.
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(Sending training data)

(B) Beam sweep at BS side

(C) beam sweep at user side

(Sending training data)



Beam Training

 (4) Feedback the index of the selected beamforming vector to

each other.

 (5) Repeat the above procedure with a higher resolution

codebook within the chosen beam until the last level (highest

resolution codebook, FK)
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5. Hybrid Precoding

 Hybrid (analog and digital) Precoding used in mmWave

massive MIMO systems

 Step1: a small-size digital precoder used to cancel interferences.

 Step2: a large-size analog beamformer used to increase

antenna array gain.

 Two architectures of hybrid beamforming:

 (1) Fully connected architecture: each RF chain connected to all 

BS antennas via PSs.

 (2) Subconnected architecture: each RF chain connected to 

only a subset of BS antennas.
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Hybrid Precoding

 Two systems of hybrid precoding:

 (1) Single-user hybrid precoding

 (2) Multiuser hybrid precoding

 Two hybrid beamforming schemes of single-user system:

 (1) Spatially sparse hybrid precoding (fully connected   

architecture)

 (2) Successive interference cancellation (SIC)-based hybrid 

precoding (subconnected architecture)

 Two-stage hybrid precoding scheme is used for multiuser 

system.
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5.1 Single-User Hybrid Precoding

<System Model>

 Hardware architecture of hybrid precoding for single-user 

mmWave massive MIMO systems
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Single-User Hybrid Precoding

‥

‥

‥
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
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 The transmitted signal:

 Consider a simple narrowband system:

 Coherence bandwidth is usually very large at mmWave , e.q. the 

order of 100MHz.
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Single-User Hybrid Precoding



where 

<Spatially Sparse Hybrid Precoding (full connected)>

 Fully connected architecture of hybrid precoding for single-

user mmWave massive MIMO system.
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Single-User Hybrid Precoding
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Single-User Hybrid Precoding

34

1

tN

2

sF
NAD

 All elements of analog beamformer A have the same amplitude 

but the different phase shifters.

 Total TX power constraint via the normalizing D to satisfy

 Design (A,D) to maximize the sum rate R(A,D) achieved by 

Gaussian signaling over mmWave channel:

 The corresponding sum-rate optimization problem: 



Single-User Hybrid Precoding

where 

 It is known that there are no general solution due to the 

nonconvex amplitude constraint 

 To find practical solutions using an approximation scheme, e.q.,  

transforming the sum rate into “distance” between AD and 

optimal unconstrained precoder Popt.
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Single-User Hybrid Precoding

 Second, the practical hybrid precoder AD is designed to close

the optimal unconstrained precoder . (Get near-optimal

performance)

 Third , the near-optimal sum-rate approximated by
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Single-User Hybrid Precoding

 Fourth, finding the best low-dimensional representation of Popt

using the basis vector               . 

 Selecting the “best”        array response vectors and finding 

their optimal baseband combination, the optimal objective

function:
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Single-User Hybrid Precoding

 It is equivalent to the typical problem of sparse signal recovery.

The above problem can be solved by the well-known concept of

orthogonal matching pursuit (OMP).
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Single-User Hybrid Precoding

 In Algorithm1:

(1) Step1&2: Initialization

(2) Step 5: Finding the vector ,which the optimal

precoder has the maximum projection.

(3) Step 6: Appending the selected to the analog

beamformer A.

(4) Step 7: LS solution D is calculated by the dominant A

(5) Step 8: Removing the dominant A contribution, the residual

precoding matrix Pres to find the next and get largest

projection.

(6) Step 9: Until all precoding vectors have been selected, the

A and D are determined to
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Single-User Hybrid Precoding

(7) Step 10: Ensuring to satisfy the TX power constraint 
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Single-User Hybrid Precoding

<Performance Evaluation>

 Simulation parameters:

 Three methods comparision:

 (1). Spatially sparse precoding 

 (2). Optimal unconstrained precoding (                , fully digital 

precoding)

 (3). Beam steering precoding (fully analog beamforming) 

 L=3 propagation paths with uniformly distributed AoAs/AoDs

 BS sector angle: AZ=60o, EL=20o wide

MS: smaller antenna arrays of omnidirectional elements (steer 

any direction) 

 Element spacing      
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Single-User Hybrid Precoding

 64x16 mmWave massive MIMO system with planar arrays at BS 

and MS

 BS uses                RF chains to TX                    streams

 Simulation results:

 Sum-rate comparison in 64x16 mmWave massive MIMO system 

with 
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Single-User Hybrid Precoding

 Sum-rate comparison in 256x64 mmWave massive MIMO 

system with 
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Single-User Hybrid Precoding
SIC-Based Hybrid Precoding (Subconnected)

 For the subconnected architecture, each RF chain is connected

to only a subset of BS antennas.

 Reducing the number of required PSs from

low computation complexity
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 Consider the single-user mmWave massive MIMO system:

 BS with antennas and RF chains

 Each RF chain connected to one subantenna array with M

antennas, i.e.,

 BS TX streams (fully spatial multiplexing gain)

 MS user with receiver antennas

 The digital precoder being specialized to a diagonal

matrix (D: power allocation)
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 The analog beamformer is a special block diagonal 

structure

where the elements have the same amplitude

but different phases.
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<Basic Idea>

 Maximizing the total achievable rate R(P) to design the hybrid

precoder P=AD

where 
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SIC-Based Hybrid Precoding 

(Subconnected)

 Satisfying the three constraints:

(1)                                                 is the             vector of      of P

(2) The amplitude of the elements of A is fixed to

The elements of each column of P have the same amplitude

due to the diagonal D.

(3)                   meeting the total TX power constraint

(1) & (2) nonconvex constraints
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SIC-Based Hybrid Precoding 

(Subconnected)

 Based on the special block diagonal hybrid precoding P, the 

precoding on different subarrays is independent.

 Decompose the total sum rate into a series of subrate optimation

problems, each subrate only considers one subarray.

 Diving P as                        ,           is the          columns of P,     

is the first               columns of P.

The total achievable rate R(P):
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where

The right side of (b) is the achievable subrate of the          subarray.

 Next, further decomposing            
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 After N decompositions, the total achievable rate R:

Optimal the subrate of 1st subantenna and update the     matrix

, until the last subarray , i.e. , SIC-based hybrid precoding

51

1

2 12
1

02

log

,

s

s

N
H H

n n n

n s n

H H

n n n N

s n

R I
N

I
N















 
  

 

  

 p H T Hp

T HP P H T I

1T

SIC-Based Hybrid Precoding 

(Subconnected)



52

SIC-Based Hybrid Precoding 

(Subconnected)



SIC-Based Hybrid Precoding 

(Subconnected)

 Focusing on subrate optimization problem of the nth subarray:

where 

F is the set of the feasible vectors satisfying three  constraints.

 only has M nonzero elements      , the subrate optimization 

problem:
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 where

is the            feasible vectors satisfying constraints 2 & 3

 , the optimal unconstrained precoding vector:

(the first column of V)

(Not obey the constraint 2 , same amplitude)
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 Convert to the distance optimization problem : (equivalent)

 The distance can be expressed by : (Using                    constraints)
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where                  ,                  , each elements      has the same  

amplitude

1st min. :

2nd
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 Get the optimal

where each element     of      has amplitude less than one, 

i.e. ,                    

(satisfying constraint 3)

TX total PWR

 After acquiring        ,       and        can be updated to find next
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 Summary the following three steps:
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SIC-Based Hybrid Precoding 

(Subconnected)

<Performance Evaluation>

 Simulation parameters:

‥ L=3 (channel paths)

‥ carrier frequency =28GHz

‥

‥ BS (AoDs =                    ) , MS (AoAs =           )

‥                              (                      )
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SIC-Based Hybrid Precoding 

(Subconnected)

 Energy efficiency    :

(                 ,                 ,                          ,                             ) 

(                               )
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5.2 Multiuser Hybrid Precoding

<System Model>

 Hardware architecture of hybrid precoding for multiuser 

mmWave massive MIMO Systems

 BS :          antennas,          RF chains                     ,communicating

with             

 Each MS:           antennas, only one RF chain
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Multiuser Hybrid Precoding

 BS communicates with every MS via only one stream

 Total data streams ,                             

 Fully connected architecture

 For the downlink , BS employs a             digital precoder

and an                analog precoder

, TX signal:

where          original signal vector,                                , 

: average TX power each user with equal power 

allocation
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Multiuser Hybrid Precoding

all the elements of A with the same constant amplitude       

the total TX power constraint with normalizing D to satisfy

.
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Multiuser Hybrid Precoding

 Consider the narrowband block-fading channel model. The RX 

signal vector      of the uth MS:

where      :                    channel matrix between BS and the uth MS 

:   

 Analog combiner      of the uth MS is used to combine the RX signal

:
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Multiuser Hybrid Precoding

where is the same constraint as the analog precoder A , i.e. ,

all the elements of having the same amplitude but

different phases. (MS only analog BF, lower cost)
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<Two-Stage Hybrid Precoding>

 Goal : Designing BS analog precoder A and digital precoder D,

MS analog combiner               to max sum rate:
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Multiuser Hybrid Precoding

 Precoding design problem to find                                      that solve

 Step 1: Search over the entire                 of all  possible              

and                 to max each user power.

 Step 2: Using iterative method to find the digital precoder D and    

suppress interferences.
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Multiuser Hybrid Precoding

 In first stage , using the beam training algorithms to design the 

analog precoding and combining vectors (without channel 

estimation)

 In second stage , each MS u estimates the effective channel 

. Then,       is fed back to BS.     

 Finally , BS uses ZF digital precoder via                                to find

D. (with normalization)
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Multiuser Hybrid Precoding

<Performance Evaluation>

 Simulation parameters:

 BS:                   with 4 MSs ,  AZ                        with uniformly

 MS: each having , EL                        with uniformly

 Channel of each user has “ one path “
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6. Conclusions

 Digital precoding aims to cancel data streams interference.

 Analog beamforming designs to improve the antenna array

gain.

 Hybrid precoding combines the advantages of digital

precoding and analog beamforming.

 Hybrid precoding seems more appropriate for future mmWave

massive MIMO systems.

 Only a small-size digital precoder via a smaller number of RF

chains will be required.
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Thanks for your attention!


