Simulation Techniques for 5G Transmission

Wen-Rong Wu
Institute of Communication Engineering
National Chiao Tung University
Hsinchu, Taiwan
2019/04/05

Content

1. Introduction to 5 G
2. Introduction to OFDM

- Theoretical background
- Receiver design
- Simulation

3. F-OFDM and W-OFDM

- Theoretical background
- Simulation

4. Mini-meter wave communication

- Theoretical background
- Simulation

1. Introduction to 5G

- Wireless communication has experienced a rapid growth and evolution since 1980s (1G, ..4G, or now 5G).

- Evolution:

- What is $5 G$?
- 5G is the fifth generation technology, and it has many advanced features potential enough to change our life dramatically.
- Targets:

https://5g-ppp.eu/\#
- Features:
- High increased peak bit rate
- Larger data volume per unit area
- High capacity
- Lower battery consumption
- Better connectivity irrespective of the geographic region
- Larger number of supporting devices
- Lower cost of infrastructural development
- Higher reliability of the communications
- How to increase the capacity by 1000 times?
- Better spectral efficiency (4):
- Spectral efficiency: $30 \mathrm{bps} / \mathrm{Hz} \rightarrow$?
- Key enabling technology, MIMO, ...
- Larger spectrum (5):
- Carrier bandwidth Increase: $100 \mathrm{MHz} \rightarrow 500 \mathrm{MHz} / 1 \mathrm{GHz}$
- Spectrum availability?
- Higher band: millimeter wave (mmWave)
- Spectrum sharing
- Unlicensed bands
- More cells, network densification (50):
- Greatly reduce the coverage of a cell, i.e., dramatically increase the cell number
- Key enabling technology, ultra-dense small cells
- Technology challenges:
- Authorized shared access
- Unlicensed bands
- mmWave
- Massive MIMO
- Phase antenna array
- Beam-forming and beam-tracking
- Small cell
- Interference management
- Full duplex radios
- SDN and NFV
- ...
- ITU has defined three usage scenarios in 5G
- Enhanced mobile broadband
- Massive machine type communications
- Ultra-reliable and low latency communications
- Key features:

- Three scenarios:

- 3GPP RAN workshop on 5G (9/18/2015):

2. Introduction to OFDM

- OFDM can be defined with the framework of frequency-division-multiplexing (FDM).
- FDM : Split a high-rate data-stream into a number of lower rate streams transmitted simultaneously over a number of carriers.

- Since the symbol duration increases for low rate carriers, the channel dispersion is decreased.
- Drawback: Guard bands make this approach inefficient.
- Remedy: use overlapping sub-channels.

- It is possible to arrange carriers such that there is no interference between them. To do that the carriers must be mathematically orthogonal.

- A necessary and sufficient condition for this requirement is that all carriers must has a same period.
- Time domain waveform:

$$
\int_{-\infty}^{\infty} \varphi_{n}(t) \varphi_{l}^{*}(t) d t= \begin{cases}1, & n=1 \\ 0, & n \neq 1\end{cases}
$$

- Consider the sampled $\Phi(\mathrm{t})$.

$$
\begin{gathered}
\Phi_{k}(n)=e^{j k \Omega_{0} n}, \quad \Omega_{0}=\frac{2 \pi}{N}, \quad k=0,1, \cdots, N-1 \\
\frac{1}{N} \sum_{n=0}^{N-1} e^{j(k-m) \Omega_{0} n}= \begin{cases}1, & k=m \\
0, & k \neq m\end{cases}
\end{gathered}
$$

- The complex exponential exhibit an impulse in the DFT domain.

$$
e^{j \ell \Omega_{0} n}
$$

- Thus, we can conduct processing in the frequency domain using DFTs.
- The main idea is to use conduct modulation in the frequency domain.

$$
A e^{j\left(\ell \Omega_{0} n+\theta\right)} \quad A e^{j \theta}=a+b j
$$

$\sum_{l} A_{l} e^{j\left(l \Omega_{0} n+\theta_{l}\right)}$

- In other words, we define QAM symbols in the frequency domain
- To eliminate ISI completely, a guard time is introduced for each OFDM symbol. Since the guard time has no signal, the problem of intercarrier interference (ICI) arises.
- ISI and guard interval:

* Continuous transmission

- ICI:

- The selected delayed version in the OFDM symbol is not a sinusoidal signal anymore.
- To solve the problem, cyclic prefix is added in the guard period.
- Cyclic prefix:

- Since the CP is added, the channel output will be a circular convolution of the channel response and the transmit signal. We then have

$$
y^{m}(n)=x^{m}(n) \otimes h(n) \Rightarrow \tilde{x}^{m}\left(e^{j \omega_{k}}\right)=\frac{\tilde{y}^{m}\left(e^{j \omega_{k}}\right)}{\tilde{h}\left(e^{j \omega_{k}}\right)} \quad * \text { In the DFT domain }
$$

- Thus, data in each channel can be recovered using a single-tap frequency domain equalizer.
- The system using this modulation technique is called orthogonal frequency division multiplexing (OFDM).
- Frequency domain response:

- Characteristics of OFDM systems:
- High spectrum efficiency
- Simple equalization
- Simple multiple access
- Sensitive to carrier frequency offset
- High peak to average power ratio
- OFDM systems:

S/P: series to parallel S/P: series to parallel

- Specifications of LTE:

Channel Bandwidth (MHz)	1.25	2.5	5	10	15	20
Frame Duration (ms)	10					
Subframe Duration (ms)	1					
Sub-carrier Spacing (kHz)	15					
Sampling Frequency (MHz)	1.92	3.84	7.68	15.36	23.04	30.72
FFT Size	128	256	512	1024	1536	2048
Occupied Sub-carriers (inc. DC sub-carrier)	76	151	301	601	901	1201
Guard Sub-carriers	52	105	211	423	635	847
Number of Resource Blocks	6	12	25	50	75	100
Occupied Channel Bandwidth (MHz)	1.140	2.265	4.515	9.015	13.515	18.015
DL Bandwidth Efficiency	77.1\%	90\%	90\%	90\%	90\%	90\%
OFDM Symbols/Subframe	7/6 (short/long CP)					
CP Length (Short CP) ($\mu \mathrm{s}$)	5.2 (first symbol) / 4.69 (six following symbols)					
CP Length (Long CP) ($\mu \mathrm{s}$)	16.67					

- Let the bandwidth for an OFDM system be f_{s}, the DFT size be N, and the $C P$ size be μN where $0<\mu<1$.
- Let the sampling frequency of an OFDM be f_{s}. Then, the period will be $\mathrm{T}=1 / \mathrm{f}_{\mathrm{s}}$. Then, the subcarrier spacing (f_{ss}) will be $1 / \mathrm{NT}=\mathrm{f}_{\mathrm{b}} / \mathrm{N}$.
- Let the number of subcarriers for data transmission be M. $(\mathrm{M} \leq \mathrm{N})$. The occupied bandwidth (f_{b}) is then $\mathrm{Mf}_{\mathrm{s}} / \mathrm{N}$.
- The data rate (r) will be $\mathrm{QM} /(1+\mu) \mathrm{NT}^{2}=\mathrm{Qf}_{s} \mathrm{M} /(1+\mu) \mathrm{N}$ where Q is the number of bits each QAM transmit.
- LTE system:
$-f_{s}=30.72 \mathrm{MHz}, \mathrm{N}=2048, \mathrm{M}=1200, \mu=1 / 8$.
$-\mathrm{f}_{\mathrm{ss}}=30.72 \mathrm{MHz} / 2048=15 \mathrm{KHz}, \mathrm{f}_{\mathrm{b}}=1200 \times 15 \mathrm{KHz}=18 \mathrm{MHz}$ (20MHz).
- For QPSK, r=2x30.72MHzx1200/(1.125x2048)=32Mbps
- Packet format (IEEE802.11a/g):
- Packet-based OFDM system
- Client and access point (AP)
- Data rate: 54Mbps
- Bandwidth: 20MHz
- CSMA/CA multiple access
- FFT size: 64, CP: 16
- Packet format (IEEE802.11a/g):

Short preamble (10) Long preamble (2)	Signal field	Payload

- Receiver:
- Inner receiver: synchronization/channel estimation
- Outer receiver: decoding
- Functions performed by preambles:

1. Start-of-packet (SOP) detection - short preamble
2. Automatic gain control (AGC) - short preamble
3. Coarse frequency offset estimation- short preamble
4. Coarse timing offset estimation - short/long preamble
5. Fine timing offset estimation - long preamble

6 . Fine frequency offset estimation - long preamble
7. Channel estimation - long preamble

- Function performed by pilots
- Phase offset, residual CFO, and residual SFO.
- Packet detection:
- The simplest method is $\left(r_{n}\right.$: received signal, m_{n} : power estimate)

$$
m_{n}=\sum_{k=0}^{L-1} r_{n-k} r_{n-k}^{*}=\sum_{k=0}^{L-1}\left|r_{n-k}\right|^{2}
$$

- The drawback of this approach is determination of threshold will be difficult (dependent on the channel).
- After packet detection, the symbol timing refines the estimate to sample leve/ precision.

$$
\hat{n}_{s}=\operatorname{argmax}\left|\sum_{k=0}^{L-1} r_{n+k} t_{k}^{*}\right|^{2}
$$

t_{k} : reference

- Packet detection - a better approach
- Let $r_{n}=s_{n}+v_{n}$. Calculate autocorrelation of the received signal

$$
c(n)=\sum_{k=0}^{L-1} r_{n+k} r_{n+k+D}^{*}
$$

- Normalize with the signal power: L: length of the sliding window, D : period of preamble

$$
p(n)=\sum_{k=0}^{L-1} r_{n+k+D} r_{n+k+D}^{*}=\sum_{k=0}^{L-1}\left|r_{n+k+D}\right|^{2}
$$

- Decision statistic:

$$
m(n)=\frac{|c(n)|^{2}}{p^{2}(n)} \stackrel{H_{1}}{>} \eta
$$

- If $m(n)$ exceeds a threshold, a packet is claimed detected.
- Carrier frequency offset (CFO) estimation:
- Assume that there are two consecutive repeated symbols (periodic).
- The output signal from a channel is still periodic if its input signal is periodic.
- Transmit/receive signal:

$$
\begin{aligned}
& y_{n}=s_{n} e^{j 2 \pi f_{t x} n T_{s}} \\
& r_{n}=s_{n} e^{j 2 \pi f_{t x} n T_{s}} e^{-j 2 \pi f_{r x} n T_{s}}=s_{n} e^{j 2 \pi\left(f_{t x}-f_{r x}\right) n T_{s}}=s_{n} e^{j 2 \pi f_{\Delta} n T_{s}}
\end{aligned}
$$

- CFO estimation:

$$
\begin{gathered}
z=\sum_{n=0}^{L-1} r_{n} r_{n+D}^{*}=\sum_{n=0}^{L-1} s_{n} s_{n+D}^{*} e^{j 2 \pi f_{\Delta} n T_{s}} e^{-j 2 \pi f_{\Delta}(n+D) T_{s}}=e^{-j 2 \pi f_{\Delta} D T_{s}} \sum_{n=0}^{L-1}\left|s_{n}\right|^{2} \\
\hat{f}_{\Delta}=-\frac{1}{2 \pi D T_{s}} \angle(z)
\end{gathered}
$$

* Unambiguous range: $\left[-\frac{1}{2 D T_{s}}, \frac{1}{2 D T_{s}}\right]$
- Symbol timing detection:
- CFO has been compensated:

$$
\hat{n}_{s}=\operatorname{argmax}\left|\sum_{k=0}^{L-1} r_{n+k} k_{k}^{t}\right|^{2}
$$

t_{k} : reference

- The reference signal can be part of the short preamble, combination of the short/long preamble, or part of the long preamble.
- Moreover, if the reference signal is composed of long preamble, we can set the long preamble as a complex Gaussian random sequence to see different result.
- This is essentially a matching operation. If periodic signal is used, periodic peaks will be observed.
- Partial matching can be conducted if CFO is not well compensated.
- Channel estimation:

$$
\tilde{y}(k)=\tilde{h}(k) \times \tilde{x}(k) \quad * \begin{aligned}
& \text { The received signal of the } k t h \\
& \text { subcarrier }
\end{aligned}
$$

- Channel estimate:

$$
\begin{gathered}
\hat{h}_{i}(k)=\frac{\tilde{y}_{i}(k)}{\tilde{x}_{i}(k)} \\
\hat{h}(k)=\frac{\hat{h}_{1}(k)+\hat{h}_{2}(k)}{2}
\end{gathered}
$$

* Estimated channel response of the k th subcarrier (i th preamble)
* Estimated channel response of the k th subcarrier
- To obtain better result, channel estimation methods discussed in the previous section can be used.
- Packet detection: a hypothesis testing problem:

$$
m(n)=\frac{|c(n)|^{H_{1}}}{p^{2}(n)} \stackrel{{ }_{H_{0}}}{\stackrel{<}{H_{0}}} \eta \quad \begin{aligned}
& H_{0}: r_{n}=v_{n} \\
& H_{1}: r_{n}=s_{n}+v_{n}
\end{aligned} \quad * v_{n} \sim C N\left(0,2 \sigma_{v}^{2}\right)
$$

- For H_{0} :

$$
\begin{aligned}
& c(n)=\sum_{k=0}^{L-1} v_{n+k} v_{n+k+D}^{*}, \quad p(n)=\sum_{k=0}^{L-1}\left|v_{n+k+D}\right|^{2} \\
& f_{c}(x) \sim C N\left(0,4 L \sigma_{v}^{4}\right), f_{p}(x) \sim \chi_{2 L}^{2}\left(2 L \sigma_{v}^{2}, 4 L \sigma_{v}^{4}\right)
\end{aligned}
$$

- Let $x_{i} \sim N\left(\mu_{i} \sigma^{2}\right)$. Then, $y=x_{1}{ }^{2}+x_{2}{ }^{2}+\ldots+x_{N}{ }^{2}$ has a Chi-square distribution with degree of freedom N.
$\mu_{i}=0$, for all $i ' s \quad \Rightarrow$ central $\chi^{2}: E\{y\}=N \sigma^{2}, \operatorname{Var}\{y\}=2 N \sigma^{4}$
$\mu_{i} \neq 0$, for some $i ' s \Rightarrow$ noncentral $\chi^{2}: E\{y\}=N \sigma^{2}+s^{2}, \operatorname{Var}\{y\}=2 N \sigma^{4}+4 \sigma^{2} s^{2}$
where $s^{2}=\sum_{i=1}^{N} \mu_{i}^{2}$
- Chi-square distribution:
- It approaches Gaussian when degree-of-freedom is large.

- Then, $f_{p}(x)$ can also be approximated by a Gaussian.

$$
* f_{c}(x) \sim C N\left(0,2 L \sigma_{v}^{4}\right)
$$

$$
\begin{aligned}
& f_{|c|^{2}}(x) \sim \chi_{2}^{2}\left(\mu_{c 2}, \sigma_{c 2}^{2}\right)=\chi_{2}^{2}\left(4 L \sigma_{v}^{4}, 16 L^{2} \sigma_{v}^{8}\right) \quad f_{p}(x) \sim \chi_{2 L}^{2}\left(2 L \sigma_{v}^{2}, 4 L \sigma_{v}^{4}\right) \\
& f_{|p|^{2}}(x) \sim \chi_{2}^{2}\left(\mu_{p 2}, \sigma_{p 2}^{2}\right)=\chi_{2}^{2}\left(4 L \sigma_{v}^{4}+\left(2 L \sigma_{v}^{2}\right)^{2}, 2\left(4 L \sigma_{v}^{4}\right)^{2}+4 \times 4 L \sigma_{v}^{4}\left(2 L \sigma_{v}^{2}\right)^{2}\right)
\end{aligned}
$$

- Let x and y denotes two random variables and y is zero mean. Let μ_{y} be a constant. If $\mu_{y} \gg \sigma_{y}$, then

$$
\frac{x}{\mu_{y}+y}=\frac{1}{\mu_{y}} \frac{x}{1+y / \mu_{y}} \approx \frac{1}{\mu_{y}} x\left(1-\frac{y}{\mu_{y}}\right)=\frac{x}{\mu_{y}}-\frac{x y}{\mu_{y}^{2}} \approx \frac{x}{\mu_{y}}
$$

- So, $\quad m(n)=\frac{|c(n)|^{2}}{p^{2}(n)} \approx \frac{|c(n)|^{2}}{\mu_{p 2}}, \quad \mu_{p 2}=4 L \sigma_{v}^{4}+\left(2 L \sigma_{v}^{2}\right)^{2} \approx 4 L^{2} \sigma_{v}^{4}$

$$
f_{m}(x) \sim \chi_{1}^{2}\left(L^{-1}, L^{-2}\right) \sim L \exp (-L x)
$$

- Recall the hypothesis testing problem:

$$
m(n)=\frac{|c(n)|^{2}}{p^{2}(n)} \underset{H_{0}}{<} \eta \quad \begin{array}{ll}
H_{0}: r_{n}=v_{n} \\
H_{1}: r_{n}=s_{n}+v_{n}
\end{array}
$$

- Consider H_{1}. Define a new variable as: $q(n)=\sqrt{m(n)}=\frac{|c(n)|}{p(n)}$. When the preamble is perfected matched, we have following result:

$$
\begin{gathered}
c(n)=\sum_{n}|s(n)|^{2}+\text { zero-mean r.v., } \quad p(n)=\sum_{n}|s(n)|^{2}+\sum_{n}|v(n)|^{2}+\text { zero-mean r.v. } \\
\nwarrow_{\text {Approximated by central Chi-square }} \text { Central Chi-square }
\end{gathered}
$$

- When the mean of a Chi-square PDF is large, it can be approximated by a Gaussian.

$$
q(n)=\sqrt{m(\mathrm{n})}=\frac{|c(n)|}{p(n)}, \quad c(n) \sim N\left(\mu_{c}, \sigma_{c}^{2}\right), p(n) \sim N\left(\mu_{p}, \sigma_{p}^{2}\right)
$$

- Recall that $r_{n}=s_{n}+v_{n}$ and let

$$
E\left\{\operatorname{Re}\left(s_{n}\right)^{2}\right\}=E\left\{\operatorname{Im}\left(s_{n}\right)^{2}\right\}=\sigma_{s}^{2}, \quad E\left\{\operatorname{Re}\left(v_{n}\right)^{2}\right\}=E\left\{\operatorname{Im}\left(v_{n}\right)^{2}\right\}=\sigma_{v}^{2}
$$

- In general, CFO exists. Then,

$$
\begin{aligned}
& r_{n}=S_{n} e^{j 2 \pi \frac{\varepsilon}{N} n}+v_{n}, \quad r_{n+D}=S_{n+D} e^{j 2 \pi \frac{\varepsilon}{N}(n+D)}+v_{n+D} \\
& r_{n} r_{n+D}^{*}=\left(s_{n} e^{j 2 \pi \frac{\varepsilon}{N} n}+v_{n}\right)\left(s_{n+D}^{*} e^{-j 2 \pi \frac{\varepsilon}{N}(n+D)}+v_{n+D}^{*}\right) \\
& =\left(s_{n} s_{n+D}^{*}\right) \mathrm{e}^{j \varphi}+\left(s_{n} v_{n+D}^{*}\right) \mathrm{e}^{j 2 \pi \frac{\varepsilon}{N} n}+\left(\mathrm{s}_{n+D}^{*} v_{n}\right) \mathrm{e}^{-j 2 \pi \frac{\varepsilon}{N}(n+D)}+v_{n}^{*} v_{n+D} \\
& \left(r_{n} r_{n+D}^{*}\right) \mathrm{e}^{-j \varphi}=\left(s_{n} S_{n+D}^{*}\right)+\left(s_{n} v_{n+D}^{*}\right) \mathrm{e}^{j 2 \pi \frac{\varepsilon}{N}(n+D)}+\left(\mathrm{S}_{n+D}^{*} v_{n}\right) \mathrm{e}^{-j 2 \pi \frac{\varepsilon}{N} n}+v_{n}^{*} v_{n+D} \mathrm{e}^{-j \varphi} \\
& =\underset{>0}{s_{n} s_{n+D}^{*}}+\operatorname{Re}\{\underset{(a)}{\left(s_{n} v_{n+D}^{*}\right) \mathrm{e}^{j 2 \pi \frac{\varepsilon}{N}(n+D)}}+\underset{(b)}{\left(\mathrm{s}_{n+D}^{*} v_{n}\right) \mathrm{e}^{-j 2 \pi \frac{\varepsilon}{N} n}}+\underbrace{v_{n}^{*} v_{n+D}}_{(c)} \mathrm{e}^{-j \varphi}\} \\
& +j \times \operatorname{Im}\left\{\left(s_{n} v_{n+D}^{*}\right) \mathrm{e}^{j 2 \pi \frac{\varepsilon}{N}(n+D)}+\left(\mathrm{S}_{n+D}^{*} v_{n}\right) \mathrm{e}^{-j 2 \pi \frac{\varepsilon}{N} n}+v_{n}^{*} v_{n+D} \mathrm{e}^{-j \varphi}\right\}
\end{aligned}
$$

- Let $n=n_{o p t}$ and $c(n)=\sum_{k=0}^{L-1} r_{n+k} r_{n+k+D}^{*}$

$$
c(n) e^{-j \varphi}=\sum_{k=0}^{L-1} s_{n} s_{n+D}^{*}+\operatorname{Re}\{(a)+(b)+(c)\}+j \times \operatorname{Im}\{(a)+(b)+(c)\}
$$

- If SNR is high or L is large enough, we can have

$$
\left|c(n) e^{-j \varphi}\right| \approx \sum_{m=0}^{L-1}\left|s_{n} s_{n+D}^{*}\right|=\sum_{m=0}^{L-1}\left|s_{n}\right|^{2}, \quad E\{|c(n)|\}=L\left(2 \sigma_{s}^{2}\right)
$$

- Note that the variance of $\left|c(n) e^{-j \varphi}\right|$ is dominated by that of $\operatorname{Re}\{(\mathrm{a})+(\mathrm{b})+(\mathrm{c})\}$.

$$
\begin{aligned}
& (a)=\left(s_{n} v_{n+D}^{*}\right) \mathrm{e}^{j 2 \pi \frac{\varepsilon}{N}(n+D)},(b)=\left(\mathrm{s}_{n+D}^{*} v_{n}\right) \mathrm{e}^{-j 2 \pi \frac{\varepsilon_{N}}{N}},(c)=v_{n}^{*} v_{n+D} \mathrm{e}^{-j \varphi} \\
& \operatorname{Re}\{(a)+(b)+(c)\}=\frac{\{(a)+(b)+(c)\}+\{(a)+(b)+(c)\}^{*}}{2}
\end{aligned}
$$

- Note that (a), (b), and (c) are all zero mean.

$$
\begin{aligned}
& (a)=\left(s_{n} v_{n+D}^{*}\right) \mathrm{e}^{j 2 \pi \frac{\varepsilon}{N}(n+D)},(b)=\left(\mathrm{s}_{n+D}^{*} v_{n}\right) \mathrm{e}^{-j 2 \pi \frac{\varepsilon}{N} n},(c)=v_{n}^{*} v_{n+D} \mathrm{e}^{-j \varphi} \\
& E\{\operatorname{Re}\{(a)+(b)+(c)\}\}^{2}=\frac{1}{4}\left\{\{(a)+(b)+(c)\}+\{(a)+(b)+(c)\}^{*}\right\}^{2}
\end{aligned}
$$

- All cross terms will be zero and we have

$$
\begin{aligned}
& E\left\{\{(a)+(b)+(c)\}+\{(a)+(b)+(c)\}^{*}\right\}^{2} \\
& =E\left\{\{(a)+(b)+(c)\}^{2}+2\{(a)+(b)+(c)\}\{(a)+(b)+(c)\}^{*}+\{(a)+(b)+(c)\}^{* 2}\right\} \\
& =2\left(4 \sigma_{s}^{2} \sigma_{v}^{2}+4 \sigma_{s}^{2} \sigma_{v}^{2}+4 \sigma_{v}^{4}\right)
\end{aligned}
$$

- Thus,

$$
|c(n)|=\left|c(n) e^{i \phi}\right| \sim N\left(L\left(2 \sigma_{s}^{2}\right), L\left(2 \sigma_{s}^{2}+\sigma_{v}^{2}\right)\left(2 \sigma_{v}^{2}\right)\right)
$$

- For $\mathrm{p}(\mathrm{n})$:

$$
p(n)=\sum_{k=0}^{L-1}\left|r_{n+k}\right|^{2}=\sum_{k=0}^{L-1}\left|s_{n+k}+v_{n+k}\right|^{2}
$$

- Thus,

$$
\begin{aligned}
& E \quad p(n)=2 L\left(\sigma_{s}^{2}+\sigma_{v}^{2}\right) \\
& \operatorname{Var} p(n)=4 L\left(2 \sigma_{s}^{2} \sigma_{v}^{2}+\sigma_{v}^{4}\right)
\end{aligned}
$$

- Then,

$$
q(n)=\frac{|c(n)|}{p(n)},\left\{\begin{array}{c}
\mu_{c}=L\left(2 \sigma_{s}^{2}\right) \\
\sigma_{c}^{2}=L\left(2 \sigma_{s}^{2}+\sigma_{v}^{2}\right)\left(2 \sigma_{v}^{2}\right) \\
\mu_{p}=2 L\left(\sigma_{s}^{2}+\sigma_{v}^{2}\right) \\
\sigma_{p}^{2}=4 L\left(2 \sigma_{s}^{2} \sigma_{v}^{2}+\sigma_{v}^{4}\right)
\end{array}\right.
$$

- Consider the following approximation:

$$
\frac{\mu_{x}+x}{\mu_{y}+y}=\frac{\mu_{x}}{\mu_{y}} \frac{1+x / \mu_{x}}{1+y / \mu_{y}} \approx \frac{\mu_{x}}{\mu_{y}}\left(1+\frac{x}{\mu_{x}}\right)\left(1-\frac{y}{\mu_{y}}\right) \approx \frac{\mu_{x}}{\mu_{y}}\left(1+\frac{x}{\mu_{x}}-\frac{y}{\mu_{y}}\right)
$$

- Let

$$
\tilde{c}=|c(n)|-\mu_{c}, \quad \tilde{p}=p(n)-\mu_{p}
$$

- Then,

$$
\begin{aligned}
& q(n)=\mu_{q}\left(1+\frac{\tilde{c}}{\mu_{c}}\right)\left(1-\frac{\tilde{p}}{\mu_{p}}\right) \approx \mu_{q}\left(1+\frac{\tilde{c}}{\mu_{c}}-\frac{\tilde{p}}{\mu_{p}}\right), \mu_{q}=\frac{\mu_{c}}{\mu_{p}} \\
& E(q(n))=\mu_{q}=\frac{\mu_{c}}{\mu_{p}} \\
& \operatorname{Var}(q(n))=E\left\{\left(q(n)-\mu_{q}\right)^{2}\right\}=\mu_{q}^{2} E\left\{\left(\frac{\tilde{c}}{\mu_{c}}-\frac{\tilde{p}}{\mu_{p}}\right)^{2}\right\} \\
& =\mu_{q}^{2}\left(E\left\{\left(\frac{\tilde{c}}{\mu_{c}}\right)^{2}\right\}+E\left\{\left(\frac{\tilde{p}}{\mu_{p}}\right)^{2}\right\}-2 E\left\{\left(\frac{\tilde{c}}{\mu_{c}}\right)\left(\frac{\tilde{p}}{\mu_{p}}\right)\right\}\right) \\
& =\mu_{q}^{2}\left(\frac{\sigma_{c}^{2}}{\mu_{c}^{2}}+\frac{\sigma_{p}^{2}}{\mu_{p}^{2}}-2 E\left\{\left(\frac{\tilde{c}}{\mu_{c}}\right)\left(\frac{\tilde{p}}{\mu_{p}}\right)\right\}\right)
\end{aligned}
$$

- Recall that:

$$
\begin{aligned}
& |c(n)| \approx \underbrace{\sum_{k=0}^{L-1}\left[s_{n+k} s_{n+k+D}^{*}\right]}_{\mu_{c}=L\left(2 \sigma_{s}^{2}\right)}+\sum_{k=0}^{L-1} \operatorname{Re}\left\{s_{n+k} v_{n+k+D}^{*}+s_{n+k+D}^{*} v_{n+k}+v_{n+k} v_{n+k+D}^{*}\right\} \\
& =\mu_{c}(1+\frac{1}{\mu_{c}} \underbrace{\sum_{k=0}^{L-1} \operatorname{Re}\left\{s_{n+k} v_{n+k+D}^{*}+s_{n+k+D}^{*} v_{n+k}+v_{n+k} v_{n+k+D}^{*}\right\}}_{A}) \\
& \begin{aligned}
p(n)= & \underbrace{\sum_{k=0}^{L-1}\left|s_{n+k}\right|^{2}+\left|v_{n+k}\right|^{2}}_{\mu_{p}=2 L\left(\sigma_{s}^{2}+\sigma_{v}^{2}\right)}+\sum_{k=0}^{L-1} s_{n+k} v_{n+k}^{*}+s_{n+k}^{*} v_{n+k} \\
& =\mu_{p}(1+\frac{1}{\mu_{p}} \underbrace{\sum_{k=0}^{L-1} S_{n+k} v_{n+k}^{*}+s_{n+k}^{*} v_{n+k}}_{B})
\end{aligned}
\end{aligned}
$$

- Then,

$$
\begin{aligned}
& \frac{A}{\mu_{c}} \sim N\left(0, \frac{\sigma_{c}^{2}}{\mu_{c}^{2}}\right), \frac{B}{\mu_{p}} \sim N\left(0, \frac{\sigma_{p}^{2}}{\mu_{p}^{2}}\right) \\
& E\left\{\left(\frac{A}{\mu_{c}}\right)\left(\frac{B}{\mu_{p}}\right)\right\}=\frac{1}{2 \mu_{c} \mu_{p}} \sum_{k=0}^{L-1} 2\left(2 \sigma_{s}^{2} 2 \sigma_{v}^{2}\right)=\frac{4 L\left(\sigma_{s}^{2} \sigma_{v}^{2}\right)}{\mu_{c} \mu_{p}} \\
& \text { *Expand and note } s_{n+k}=s_{n+k+D}
\end{aligned}
$$

- Finally, we have

$$
\operatorname{Var}(q(n))=\mu_{q}^{2}\left(\frac{\sigma_{c}^{2}}{\mu_{c}^{2}}+\frac{\sigma_{p}^{2}}{\mu_{p}^{2}}-2 \operatorname{Cov}\left(\frac{A}{\mu_{c}}, \frac{B}{\mu_{p}}\right)\right)=\mu_{q}^{2}\left(\frac{\sigma_{c}^{2}}{\mu_{c}^{2}}+\frac{\sigma_{p}^{2}}{\mu_{p}^{2}}-\frac{8 L\left(\sigma_{s}^{2} \sigma_{v}^{2}\right)}{\mu_{c} \mu_{p}}\right)
$$

- Then, $\mathrm{q}(\mathrm{n})$ can also be approximated by a Gaussian PDF.

$$
E\{q(n)\}=\frac{\mu_{c}}{\mu_{p}}=\frac{L\left(2 \sigma_{s}^{2}\right)}{L\left(2 \sigma_{s}^{2}+2 \sigma_{v}^{2}\right)}=\mu_{q}
$$

$$
\operatorname{Var}\{q(n)\}=\mu_{q}^{2}\left(\frac{\sigma_{c}^{2}}{\mu_{c}^{2}}+\frac{\sigma_{p}^{2}}{\mu_{p}^{2}}-\frac{8 L\left(\sigma_{s}^{2} \sigma_{v}^{2}\right)}{\mu_{c} \mu_{p}}\right)=\mu_{q}^{2}\left(\frac{4 \sigma_{s}^{2} \sigma_{v}^{2}+6 \sigma_{v}^{4}+8 \frac{\sigma_{v}^{6}}{\sigma_{s}^{2}}+2 \frac{\sigma_{v}^{8}}{\sigma_{s}^{4}}}{L\left(2 \sigma_{s}^{2}+2 \sigma_{v}^{2}\right)^{2}}\right)=\sigma_{q}^{2}
$$

- Note that $m(n)=q^{2}(n)$, and we can approximate $m(n)$ with a non-central Chi-square distribution.
- Finally, we have

$$
\begin{aligned}
& E\{m(n)\}=\sigma_{q}^{2}+\mu_{q}^{2} \approx \mu_{q}^{2}=\mu_{m} \\
& \operatorname{Var}\{m(n)\}=2 \sigma_{q}^{4}+4 \sigma_{q}^{2} \mu_{q}^{2} \approx 4 \sigma_{q}^{2} \mu_{q}^{2}=\sigma_{m}^{2}
\end{aligned}
$$

- Examples (PDF of $m\left(\mathrm{n}_{\text {opt }}\right)$ for H_{0} and H_{1}):

- For H_{0}, the PDF of $\mathrm{m}(\mathrm{n})$ is

$$
p_{m}(x)=L \mathrm{e}^{-L x}, x \geq 0
$$

- Thus, we can calculate the probability of false alarm as:

$$
p\left(m(n) \geq \eta \mid H_{0}\right)=\int_{\eta}^{\infty} L e^{-L x} d x=e^{-L \eta}
$$

- For H_{1}, the PDF of $\mathrm{m}(\mathrm{n})$ is

$$
p_{m}(x)=\frac{1}{\sqrt{2 \pi} \sigma_{m}} e^{-\frac{\left(x-\mu_{n}\right)^{2}}{2 \sigma_{m}^{2}}}
$$

- We can calculate the probability of detection as:

$$
p\left(m(n) \geq \eta \mid H_{1}\right)=\int_{\eta}^{\infty} \frac{1}{\sqrt{2 \pi} \sigma_{m}} e^{-\frac{\left(x-\mu_{n}\right)^{2}}{2 \sigma_{m}^{2}}} d x=Q\left(\frac{\eta-\mu_{m}}{\sigma_{m}}\right)
$$

- Define SNR as

$$
\mathrm{SNR}=\frac{\sigma_{s}^{2}}{\sigma_{v}^{2}} .
$$

- We can rewrite μ_{m} and $\sigma_{\mathrm{m}}{ }^{2}$ as:

$$
\begin{aligned}
& \mu_{m}=\frac{\mathrm{SNR}^{2}}{(1+\mathrm{SNR})^{2}}+\frac{(1+\mathrm{SNR})^{3}+\mathrm{SNR}^{2}(2+\mathrm{SNR})}{2 \times L(1+\mathrm{SNR})^{4}} \approx \frac{\mathrm{SNR}^{2}}{(1+\mathrm{SNR})^{2}} \\
& \sigma_{m}{ }^{2}=\frac{2 \times \mathrm{SNR}^{2}\left[(1+\mathrm{SNR})^{3}+\mathrm{SNR}\left(1+\mathrm{SNR}^{2}\right)\right]}{L(1+\mathrm{SNR})^{6}}
\end{aligned}
$$

- Carrier frequency offset (CFO) estimation:
- Assume that there are two consecutive repeated symbols (periodic).
- The output signal from a channel is still periodic if its input signal is periodic.
- Transmit/receive signal:

$$
\begin{aligned}
& y_{n}=s_{n} e^{j 2 \pi f_{t x} n T_{s}} \\
& r_{n}=s_{n} e^{j 2 \pi f_{t x} n T_{s}} e^{-j 2 \pi f_{r x} n T_{s}}=s_{n} e^{j 2 \pi\left(f_{t x}-f_{r x}\right) n T_{s}}=s_{n} e^{j 2 \pi f_{\Delta} n T_{s}}
\end{aligned}
$$

- CFO estimation:

$$
\begin{gathered}
z=\sum_{n=0}^{L-1} r_{n} r_{n+D}^{*}=\sum_{n=0}^{L-1} s_{n} s_{n+D}^{*} e^{j 2 \pi f_{\Delta} T_{s}} e^{-j 2 \pi f_{\Delta}(n+D) T_{s}}=e^{-j 2 \pi f_{\Delta} D T_{s}} \sum_{n=0}^{L-1}\left|s_{n}\right|^{2} \\
\hat{f}_{\Delta}=-\frac{1}{2 \pi D T_{s}} \angle(z)
\end{gathered}
$$

- In OFDM (N: DFT size):

$$
\angle z=2 \pi f_{\Delta} D T_{s}=2 \pi \frac{f_{\Delta}}{f_{s}} D=2 \pi \frac{K+\varepsilon}{D} D, \quad K: \text { intger, } 0<\varepsilon<1
$$

* K/D is called integer CFO while ε / D is fractional
- Note that the definition of integer CFO varies with D. If using CP for CFO estimation, $\mathrm{D}=\mathrm{N}$ and integer CFO corresponds to K/N.
- Fractional CFO is usually estimated first.

$$
z=\sum_{n=0}^{L-1} r_{n} r_{n+D}^{*}=e^{-j 2 \pi D \frac{\varepsilon}{N}} \sum_{n=0}^{L-1}\left|s_{n}\right|^{2} \Rightarrow \frac{\hat{\varepsilon}}{N}=-\frac{1}{2 \pi D} \angle(z)
$$

- Once fractional CFO is estimated and compensated, the integer CFO can be estimated by matching known pilots in frequency domain.
- From the previous result, we have

$$
\begin{aligned}
r_{n} r_{n+D}^{*} & =\left(s_{n} e^{j 2 \pi \frac{\varepsilon}{N} n}+v_{n}\right)\left(s_{n+D}^{*} e^{-j 2 \pi \frac{\varepsilon}{N}(n+D)}+v_{n+D}^{*}\right) \\
& =\left(s_{n} s_{n+D}^{*}\right) e^{j \phi}+\left(s_{n} v_{n+D}^{*}\right) \mathrm{e}^{j 2 \pi \frac{\varepsilon}{N} n}+\left(\mathrm{s}_{n+D}^{*} v_{n}\right) \mathrm{e}^{-j 2 \pi \frac{\varepsilon}{N}(n+D)}+v_{n}^{*} v_{n+D} \\
& =\left|s_{n}\right|^{2} e^{j \phi}+\operatorname{Re}\{(a)+(b)+(c)\}+j \times \operatorname{Im}\{(a)+(b)+(c)\}
\end{aligned}
$$

$$
* \phi=-2 \pi \frac{\varepsilon}{N} D
$$

- The phase estimate is perturbed mainly by the $\operatorname{Im}\{(\mathrm{a})+$ (b) $+(\mathrm{c})\}$ term. If $\phi=0$ and SNR is high, then

$$
\hat{\phi}=\tan ^{-1}\left(\frac{\operatorname{Im}\left(r_{n} r_{n+D}^{*}\right)}{\operatorname{Re}\left(r_{n} r_{n+D}^{*}\right)}\right) \approx \phi+\frac{\operatorname{Im}(a)+(b)+(c)}{\left|s_{n}\right|^{2}}
$$

- Thus, we have

$$
* c(n)=\sum_{k=0}^{L-1} r_{n+k} r_{n+k+D}^{*}
$$

$$
\left|c\left(n_{\text {opt }}\right)\right| \sim N\left(L\left(2 \sigma_{s}^{2}\right), L\left(2 \sigma_{s}^{2}+\sigma_{v}^{2}\right)\left(2 \sigma_{v}^{2}\right)\right)
$$

$E\{\hat{\phi}\}=\phi$

$$
* \operatorname{Var}[\operatorname{Im}(a)+(b)+(c)]=\operatorname{Var}[\operatorname{Re}(a)+(b)+(c)]
$$

$\operatorname{Var}\{\hat{\phi}\}=\frac{L\left(2 \sigma_{s}^{2}+\sigma_{v}^{2}\right)\left(2 \sigma_{v}^{2}\right)}{\left(L\left(2 \sigma_{s}^{2}\right)\right)^{2}}=\frac{\sigma_{v}^{2}\left(2 \sigma_{s}^{2}+\sigma_{v}^{2}\right)}{2 L \sigma_{s}^{4}} \approx \frac{\sigma_{v}^{2}}{L \sigma_{s}^{2}}=\frac{1}{L \times \mathrm{SNR}}$

- Note that the result also holds for $\phi \neq 0$.
- For two long preambles: $r_{n}=s_{n}+v_{n}$,

$$
\begin{array}{r}
\tilde{S}_{1, k}=\sum_{n=0}^{N-1} s_{n} e^{-j \frac{2 \pi k}{N} n}, \quad \tilde{S}_{2, k}=\sum_{n=N}^{2 N-1} s_{n} e^{-j \frac{2 \pi k}{N} n}=\sum_{n=0}^{N-1} s_{n+N} e^{-j \frac{2 \pi k}{N}(n+N)}=\sum_{n=0}^{N-1} s_{n} e^{-j \frac{2 \pi k}{N} n} \\
\text { * Does not consider CP } \\
\text { * Does not have CFO }
\end{array}
$$

- If CFO presents, then

$$
s_{n+N}=s_{n} e^{j 2 \pi \varepsilon} \Rightarrow \tilde{S}_{2, k}=\tilde{S}_{1, k} e^{-j 2 \pi \varepsilon}
$$

- This is to say that CFO can be estimated in frequency domain.

$$
\begin{aligned}
& y_{1, k}=\tilde{r}_{1, k}+\tilde{v}_{1, k} \\
& y_{2, k}=\tilde{r}_{1, k} e^{j 2 \pi \epsilon}+\tilde{v}_{2, k}
\end{aligned}
$$

- With maximum likelihood estimate, CFO can be estimated by:

$$
\hat{\varepsilon}=\frac{1}{2 \pi} \tan ^{-1}\left(\frac{\sum_{k=0}^{K-1} \operatorname{Im}\left[y_{2, k} y_{1, k}^{*}\right]}{\sum_{k=0}^{K-1} \operatorname{Re}\left[y_{2 k} y_{1 k}^{*}\right]}\right)
$$

- It has been shown in [3] that

$$
\operatorname{Var}\{\hat{\phi}\} \leq \frac{1}{K \times \mathrm{SNR}}
$$

- Symbol timing (CFO has been compensated):

$$
\hat{n}_{s}=\operatorname{argmax}\left|\sum_{k=0}^{L-1} r_{n+k} t^{t}\right|^{2} \quad t_{k}: \text { reference }
$$

- Similar to that in packet detection, we can formulate two hypotheses.
- H_{0} (partially matched):

- H_{1} (completely matched):

- First, we let the reference signal be the long preamble which is deterministic.
- Let

$$
z(n)=\sum_{k=0}^{L-1} r(n-k) t^{*}(L-k)
$$

- For $\mathrm{H}_{0}, \mathrm{r}($.$) and \mathrm{t}($.$) are partially matched and \mathrm{z}(\mathrm{n})$ can be written as

$$
z(n)=\underbrace{\left(\sum_{k=n}^{L-1} s(n-k) t^{*}(L-k)+\sum_{k=0}^{m-1} s(n-k) t^{*}(L-k)\right)}_{S_{g} g n a l}+\underbrace{\sum_{k=0}^{L-1} v(n-k) t^{*}(L-k)}_{\text {Noise }}
$$

- L is the length of the long training sequence.
- The first half of the signal part is $s(n-k)=p(L-k+m)$ where $p($. is the short training sequence with length L .
- The second half of the signal is $s(n-k)=t(m-k)$
- m is the length of the input signal that matches the referene signal.
- Mean and variance of $z(n)$:

$$
* \operatorname{var}\left(p_{n}\right)=\sigma_{s}^{2}
$$

$$
\operatorname{var}\left(t_{n}\right)=\sigma_{t}^{2}
$$

$$
\begin{aligned}
& E\{z(n)\}=\sum_{k=m}^{L-1} p(L-k+m) t^{*}(L-k)+\sum_{k=0}^{m-1} t(m-k) t^{*}(L-k)=\sum_{k=0}^{m-1} t(m-k) t^{*}(L-k)=\mu_{z}(n) \\
& \operatorname{Var}\left(z_{o}\right)=E\left\{\left|z_{o}-\mu_{z}\right|^{2}\right\}=E\left\{\left|\sum_{k=0}^{L-1} v(n-k) t^{*}(L-k)\right|^{2}\right\}=\sum_{k=1}^{L} 2 \sigma_{v}^{2}|t(L-k)|^{2}=2 L \sigma_{v}^{2} \sigma_{t}^{2}=\sigma_{z}^{2}
\end{aligned}
$$

- By the CLT, $z(n) \sim C N\left(\mu_{z}, \sigma_{z}^{2}\right)$.
- Then, $|z(n)|^{2}$ can be approximated by a non-central Chisquare distribution as:

$$
\begin{aligned}
& \left|\sum_{k=0}^{L-1} r(n-k) t^{*}(L-k)\right|^{2} \sim \chi_{2}^{2}\left(\mu_{z 2}, \sigma_{z 2}^{2}\right) \\
& \mu_{z 2}=2 \times\left(\frac{1}{2} \sigma_{z}^{2}\right)+\left|\mu_{z}(n)\right|^{2} \\
& \sigma_{z 2}^{2}=2 \times 2 \times\left(\frac{1}{2} \sigma_{z}^{2}\right)^{2}+4 \times\left|\mu_{z}(n)\right|^{2}\left(\frac{1}{2} \sigma_{z}^{2}\right)
\end{aligned}
$$

- For $\mathrm{H}_{1}, \mathrm{r}($.$) and \mathrm{t}($.$) are completely matched and \mathrm{z}(\mathrm{n})$ can be written as:

$$
\begin{aligned}
z(n) & =\sum_{k=0}^{L-1} r(L-k) t^{*}(L-k)=\sum_{k=0}^{L-1}(t(L-k)+v(L-k)) \times t^{*}(L-k) \\
& =\sum_{k=0}^{L-1} t(L-k) t^{*}(L-k)+v(L-k) t^{*}(L-k)
\end{aligned}
$$

- Mean and variance of $z(n)$ can be derived as:

$$
\begin{aligned}
E\{z(n)\} & =E\left\{\sum_{k=0}^{L-1}\left(t(L-k) t^{*}(L-k)+v(L-k) t^{*}(L-k)\right)\right\}=\sum_{k=0}^{L-1}|t(L-k)|^{2}=L \sigma_{t}^{2}=\mu_{z} \\
\operatorname{Var}\{z(n)\} & =E\left\{\left|\sum_{k=0}^{L-1}\left(t(L-k) t^{*}(L-k)+v(L-k) t^{*}(L-k)\right)-\mu_{z}\right|^{2}\right\} \\
& =\sum_{k=0}^{L-1} E\left\{\left|v(L-k) t^{*}(L-k)\right|^{2}\right\}=\sum_{k=0}^{L-1} 2 \sigma_{v}{ }^{2}|t(L-k)|^{2}=2 L \sigma_{t}^{2} \sigma_{v}^{2}=\sigma_{z}^{2}
\end{aligned}
$$

- By the CLT, the distribution of $z(n)$ can be approximated as a complex Gaussian random variable:

$$
z(n) \sim C N\left(\mu_{z}, \sigma_{z}^{2}\right) .
$$

- Again, $|\mathrm{z}(\mathrm{n})|^{2}$ can be approximated by a non-central Chisquare distribution as:

$$
\begin{aligned}
& |z(n)|^{2}=\left|\sum_{k=0}^{L-1} r(n-k) t^{*}(L-k)\right|^{2} \sim \chi_{2}^{2}\left(\mu_{z 2}, \sigma_{z 2}^{2}\right) \\
& \mu_{z 2}=2 \times\left(\frac{1}{2} \sigma_{z}^{2}\right)+\mu_{z}^{2}, \\
& \sigma_{z 2}^{2}=2 \times 2 \times\left(\frac{1}{2} \sigma_{z}^{2}\right)^{2}+4 \times \mu_{z}^{2}\left(\frac{1}{2} \sigma_{z}^{2}\right)
\end{aligned}
$$

- Simulation result (SNR=10dB):

- Before complete matching, the mean fluctuates.
- When complete matching, the mean spikes.
- The variance remains the same for all cases.
- The reference signal can be treated as a complex Gaussian random process also ($\mathrm{t}(\mathrm{n}) \sim \mathrm{CN}\left(0, \sigma_{\mathrm{t}}^{2}\right)$).

L2
L1
L2
L1
L2

- For H_{0} :

$$
\begin{aligned}
& E\{z(n)\}=\sum_{k=m}^{L-1} p(L-k+m) t^{*}(L-k)+\sum_{k=0}^{m-1} t(m-k) t^{*}(L-k)=0 \quad \begin{array}{l}
\operatorname{var}\left(p_{n}\right)=\sigma_{s}^{2}=\sigma_{t}^{2} \\
\operatorname{Var}(z)=\operatorname{Var}\left\{\sum_{k=m}^{L-1} p(L-k+m) t^{*}(L-k)+\sum_{k=0}^{m-1} t(m-k) t^{*}(L-k)+\sum_{k=0}^{L-1} v(n-k) t^{*}(L-k)\right\} \\
=(L-m) \sigma_{s}^{2} \sigma_{t}^{2}+m \sigma_{t}^{2}+L \sigma_{v}^{2} \sigma_{t}^{2}
\end{array}
\end{aligned}
$$

- For H_{1} :

$$
\begin{aligned}
& E\{z(n)\}=\sum_{k=0}^{L-1} t(L-k) t^{*}(L-k)=L \sigma_{t}^{2} \\
& \operatorname{Var}(z)=\operatorname{Var}\left\{\sum_{k=0}^{L-1} t(L-k) t^{*}(L-k)+\sum_{k=0}^{L-1} v(n-k) t^{*}(L-k)\right\}=L \sigma_{t}^{2}+L \sigma_{v}^{2} \sigma_{t}^{2}
\end{aligned}
$$

- Simulation result (SNR=10dB):

- Before complete matching, the mean is zero.
- When complete matching, the mean spikes.
- The variance is the same for all cases.
- By the CLT, the distribution of z can be approximated as a complex Gaussian random variable.

$$
z \sim C N\left(\mu_{z}, \sigma_{z}^{2}\right)
$$

- Then, $|\mathrm{z}(\mathrm{n})|$ can be approximated as non-central Chisquare distribution with DoF two.

$$
\begin{aligned}
& |z(n)|^{2}=\left|\sum_{k=0}^{L-1} r(n-k) t^{*}(L-k)\right|^{2} \sim \chi_{2}^{2}\left(\mu_{z 2}, \sigma_{z 2}^{2}\right) \\
& \mu_{z 2}=2 \times\left(\frac{1}{2} \sigma_{z}^{2}\right)+\mu_{z}^{2}, \sigma_{z 2}^{2}=2 \times 2 \times\left(\frac{1}{2} \sigma_{z}^{2}\right)^{2}+4 \times \mu_{z}^{2}\left(\frac{1}{2} \sigma_{z}^{2}\right)
\end{aligned}
$$

- Channel estimation:

$$
\tilde{y}(k)=\tilde{h}(k) \times \tilde{x}(k) \quad * \text { The received signal of the } k \text { th }
$$

- Channel estimate:

$$
\begin{array}{ll}
\hat{h}_{i}(k)=\frac{\tilde{y}_{i}(k)}{\tilde{x}_{i}(k)} & * \begin{array}{l}
\text { Estimated channel response } \\
\text { of the } k \text { th subcarrier (ith preamble) }
\end{array} \\
\hat{h}(k)=\frac{\hat{h}_{1}(k)+\hat{h}_{2}(k)}{2} & * \begin{array}{l}
\text { Estimated channel response } \\
\text { of the } k \text { th subcarrier }
\end{array}
\end{array}
$$

- In many OFDM systems, channel response needed to be interpolated.
- In $802.11 \mathrm{a} / \mathrm{g}$, no interpolation is needed, giving the simple method reasonably good performance.
- Using the vector representation (OFDM symbol), we have

$$
\mathbf{y}=\mathbf{H x}+\mathbf{v}
$$

- Let

$$
\mathbf{h}=\underbrace{[h(1), h(2), \ldots, h(K), 0, \ldots ., 0]}_{F F T \text { size }}, \quad \mathbf{H}: \text { circult matrix by } \mathbf{h}
$$

$$
\tilde{\mathbf{y}}=\mathbf{F y}, \quad \tilde{\mathbf{x}}=\mathbf{F x}, \quad \mathbf{v}=\mathbf{F v}, \quad \tilde{\mathbf{h}}=\mathbf{F h}, \quad \mathbf{F}: \text { DFT matrix }
$$

- Then,

$$
\mathbf{F y}=\mathbf{F H F}^{*} \mathbf{F x}+\mathbf{F v} \Rightarrow \tilde{\mathbf{y}}=\tilde{\mathbf{H}} \tilde{\mathbf{x}}+\tilde{\mathbf{v}}
$$

$\tilde{\mathbf{H}}: \operatorname{diag}(\tilde{\mathbf{h}}), \quad \tilde{\mathbf{h}}=\mathbf{F h}$

- And (for a long preamble),

$$
\tilde{y}_{k}=\tilde{h}_{k} \tilde{x}_{k}+\tilde{v}_{k} \Rightarrow \bar{h}_{k}=\frac{\tilde{y}_{k}}{\tilde{x}_{k}}=\tilde{h}_{k}+\frac{\tilde{v}_{k}}{\tilde{x}_{k}}=\tilde{h}_{k}+\tilde{\delta}_{k}
$$

- For data detection (data symbol): $\quad{ }^{*} \bar{x}_{k}$: estimate of \tilde{x}_{k}

$$
\begin{aligned}
& \tilde{y}_{k}=\tilde{h}_{k} \tilde{x}_{k}+\tilde{v}_{k} \Rightarrow \bar{x}_{k}=\frac{\tilde{y}_{k}}{\bar{h}_{k}}=\frac{\tilde{h}_{k} \tilde{x}_{k}}{\bar{h}_{k}}+\frac{\tilde{v}_{k}}{\bar{h}_{k}}=\frac{\tilde{h}_{k} \tilde{x}_{k}}{\tilde{h}_{k}+\tilde{\delta}_{k}}+\frac{\tilde{v}_{k}}{\tilde{h}_{k}+\tilde{\delta}_{k}} \\
& \bar{x}_{k}=\frac{1}{\tilde{h}_{k}}\left(\frac{\tilde{h}_{k} \tilde{x}_{k}}{1+\tilde{\delta}_{k} / \tilde{h}_{k}}+\frac{\tilde{v}_{k}}{1+\tilde{\delta}_{k} / \tilde{h}_{k}}\right)
\end{aligned}
$$

- Assuming that the error is small, then we can have

$$
\begin{aligned}
\bar{x}_{k} & =\frac{1}{\tilde{h}_{k}}\left(\frac{\tilde{h}_{k} \tilde{x}_{k}}{1+\tilde{\delta}_{k} / \tilde{h}_{k}}+\frac{\tilde{v}_{k}}{1+\tilde{\delta}_{k} / \tilde{h}_{k}}\right) \approx \frac{1}{\tilde{h}_{k}}\left(\left[1-\frac{\tilde{\delta}_{k}}{\tilde{h}_{k}}\right] \tilde{h}_{k} \tilde{x}_{k}+\left[1-\frac{\tilde{\delta}_{k}}{\tilde{h}_{k}}\right] \tilde{v}_{k}\right) \\
& =\tilde{x}_{k}+\frac{\tilde{v}_{k}}{\tilde{h}_{k}}-\underbrace{\frac{\tilde{h}_{k}}{\tilde{h}_{k}} \tilde{x}_{k}-\frac{\tilde{\delta}_{k}}{\tilde{h}_{k}^{2}} \tilde{v}_{k}}_{\text {Extra noise }}
\end{aligned}
$$

- Let the preamble be QPSK modulated (and normalized) and the channel gain be one.
- In addition, the channel is estimated with two long preambles. Then,

$$
\sigma_{e x}^{2}=\sigma_{\tilde{\delta}}^{2} \sigma_{\tilde{x}}^{2}+\sigma_{\tilde{\delta}}^{2} \sigma_{\tilde{v}}^{2}=\frac{1}{2} \sigma_{\tilde{v}}^{2}+\frac{1}{2} \sigma_{\tilde{v}}^{2} \sigma_{\tilde{v}}^{2}
$$

- The MSE in data detection becomes $\sigma_{v}^{2}+\sigma_{e x}^{2}$. And, the SNR becomes
$-10 \log _{10}\left(\sigma_{v}^{2}+\sigma_{e x}^{2}\right)=-10 \log _{10} \sigma_{v}^{2}\left(1+\frac{\sigma_{e x}^{2}}{\sigma_{v}^{2}}\right)=-10 \log _{10} \sigma_{v}^{2}-10 \log _{10}\left(1+\frac{\sigma_{e x}^{2}}{\sigma_{v}^{2}}\right)$
- Due to the channel estimation, the SNR is then degraded by

$$
10 \log _{10}\left(1+\frac{\sigma_{e x}^{2}}{\sigma_{v}^{2}}\right) .
$$

- Note that noise in channel estimate and data detection is different (preamble and data symbol).
- Data detection:

$$
\hat{x}(k)=\frac{\tilde{y}(k)}{\bar{h}(k)} \quad * \text { Estimated data in the } k \text { th subcarrier }
$$

- The final channel estimate is the average of the two estimates with two long preambles.
- With the degraded SNR, we can then calculate the probability of QAM symbol error.
- Note that the effect of residual CFO and SFO will be accumulated. Without proper tracking, the error rate will be increased for later OFDM symbols.
- Performance evaluation of synchronization:
- Set a window size $\left(W_{p}\right)$ for packet detection.
- If the packet is detected within W_{p}, the detection is successful (right timing plus/minus $W_{p} / 2$).
- Probabilities of detection, missing, and false alarm can then be calculated.
- If packet detection is successful, CFO estimation, symbol timing, and channel estimation can then be conducted (searching window for symbol timing: W_{s}).
- MSEs can then be calculated to evaluate the performance of CFO estimation/symbol timing.
- The size of W_{s} is a tradeoff between the performance and the computational complexity.
- All the derived theoretical values can be compared with the simulated, verifying the correctness of simulations.
- Practice 1:
- Build an OFDM system with LTE specifications including
- Transmitter
- AWGN channel, and
- Receiver (perfect synchronization).
- Plot SER vs. SNR.
* Note: SNR in time domain is different from that seen in each subcarrier
- Assume QPSK symbols
- FFT size=2048 (number of used subcarriers=1200)
- Practice 2:
- Redo the practice with a multipath channel.
- Result:

