開課	真理大學
大學	
A. 課	棒球場上的物理學
程名	
稱	
B. 課	(1) 摘要:

程綱 要

本課程-「棒球場上的物理學」將以抽絲剝繭的方式,替所有的棒球迷上一堂大家會感 興趣的物理課,並於棒球點滴之間揭開隱藏於棒球現象背後的物理原理。相信這門課將 會對修課同學激發出另一種觀看棒球的角度,甚至進一步地也能對物理學多出一分的好 感。進一步,開始去追尋事物背後的基本道理與科學解釋,而這也正是現代公民社會中 科學素養的具體表現。

(2) 課程單元進度

(4)	·		1
週	單元主題		
1	熱身 - 課程介紹	● 棒球的物理思考-棒球 TEAM	實體授課
2	盗壘的運動學	● 伽利略對自然運動的觀點● 如何描述物體的運動● 盗壘的運動學	非同步遠距教學
3	理想狀況下的棒球飛行	◆ 牛頓的三個運動定律◆ 理想狀況下的棒球可飛多遠?	非同步 遠距教學
4	作用於飛行棒球上的力	◆ 牛頓之重力理論◆ 作用於飛行棒球上的力有哪些?怎麼來?	非同步 遠距教學
5	作用於飛行棒球上的力有多大	■ 量網分析● 阻力係數與馬格納斯係數的大小測定	同步遠距教學
6	棒球的飛行	◆ 棒球飛行軌跡的科學分析◆ 內野高飛球	非同步遠距教學
7	投手的技俩	◆ 投手之球種介紹◆ 物理學家眼中對投手球種的科學解釋	非同步遠距教學
8	科技下的投手球種分析	● 運動大數據的開端-PITCH f/x ● 現代科技下的棒球比賽	同步遠距教學
9	期中考		
10	球來就打!? - 變化球怎麼打?	課堂小實驗 - 人的反應時間紅線密碼與打擊策略細看打擊者的揮棒與視覺反應時間	實體授課
11	棒球的特性	棒球的製造棒球之反彈係數(COR)-「能量」的概念影響棒球反彈係數的因數	非同步遠距教學
12	球棒的特性	 球棒的製造 從球棒的平衡點談「質量中心」與「力矩」的概念 球棒的「轉動慣量」與揮棒速度	非同步遠距教學
13	打擊出去	■ 剛體間的碰撞問題-撞球趣● 球棒的反彈率● 打擊出去的棒球可飛多快?	非同步遠距教學

	14 細看球棒遇見	● 非理想剛體撞擊後的震盪模式 ● 外野守備的第一步是看見球,還是聽見球	非同步
	15 職棒選手為何	● 何處是球棒的「甜蜜點」? 「不拿鋁棒? ● 鋁棒的特別之處-彈簧墊效應 ● 大砲選手拿「加料」木棒,有道理嗎?	非同步遠距教學
	16 有沒有可能打	丁出一支600英尺的全壘打?	同步 遠距教學
	17 我們理解棒球	这嗎?	實體授課
	18 期末考		
C. 開 課數	(1)曾應用場域	MOOCs ☑遠距教學學分課程 先修課程 公部門及企業訓練課程 國際海外課程(可複選)	
據	(2)選用機構	真理大學:遠距教學學分課程	
14	(3)選用人數	計畫合作校際選課 真理大學:50人	
		淡江大學:37人 	
		實踐大學:6人 大同大學:2人	
	(4)開放教育資	課程影片採用自製教學影片,圖片以自製為主。	
	源(選填)		
		專業進階課程 專業基礎課程 ☑通識課程	
	(=) (1 1= 1 -4 1=		
用學	(2)關聯課名	棒球科學、運動科學、生物力學、基礎物理學。	
用學科		棒球科學、運動科學、生物力學、基礎物理學。	
·	(2)關聯課名	棒球科學、運動科學、生物力學、基礎物理學。	
•	(2)關聯課名 自己填、資訊	學分數:2 學分	
•	(2)關聯課名 自己填、資訊 網	學分數:2 學分 授課方式:	Λ ΔΦ.)
•	(2)關聯課名 自己填、資訊 網	學分數:2 學分	
•	(2)關聯課名 自己填、資訊 網	學分數:2 學分 授課方式: 非同步線上課程(10週,共15支影片。每支影片約40-50 同步線上課程(3週,以解答同學對課程內容的問題為主	
•	(2)關聯課名 自己填、資訊 網	學分數:2 學分 授課方式: 非同步線上課程(10週,共15支影片。每支影片約40-50 同步線上課程(3週,以解答同學對課程內容的問題為主)

(2)難點分析 上圖統計是於課程結束當週根據 YouTube 的統計次數,看來大家是真 的有去觀看課程影片,並有達原本所設想讓學員能自由回看影片之目 的,因此課程並無設定影片觀看的時限。但若比對課程結束前兩週的 統計數據,可發現上圖是一個被高估的統計數字。再說,我也無法由 此數據來判斷同學觀看時的認真程度?(對此的考核,我主要是利用同 步線上課程的機會來進行考核)或只是讓影片單獨撥放以便來獲取課程 所定下的要求。唯一可確認的是,不少同學是在最後的兩週才大量地 補滿課程所要求的觀片次數。 F. 教 (1)實際案例作 有別於近年來廣受重視的精準運動科學研究案中的目標,藉由科學化 訓練以提升運動員的成績,並帶動周遭的運動產業。本課程則是著重 學指 法 於運動本身的科學分析,就以課程所專注的棒球為例,棒球飛行所涉 31 及的流體力學,或是球棒與球的碰撞問題等等,即便在物理學中均屬 傳統的古典問題。然而一旦得運用在真實的棒球場上,眾多的環境變 數便會將問題演變成一個頗為複雜的體系。那科學家該如何去分析這 樣的複雜性問題,這正是這門課想帶給學生的體驗與視野,如何將課 本上的科學原理轉化成實務上的應用。雖然開設這樣的通識課程,的 確可招來不少對棒球有興趣的同學來修課,從中也拓展不少科學教育 上的實施對象,讓很多高中後不再接觸物理的同學重拾物理的思考, 還覺得有趣。 但在實體課堂的經驗中,我們是常以簡化課程的內容來換取學生的專 心度。反之,在教學影片的錄製上,是比較容易利用段落的安排規劃 給出較完善的陳述。而更讓我意外的是,透過本課程於這學期所設定 錄製的教學影片,不少同學反應他們會不經意地回看某些片段,以便 理解影片的後面議題。這可是實體課程中所無法出現的模式,也歡喜 能真實看見非同步遠距課程的此項優點。 但由於這門課是初次開設,必然還有許多有待改善之處,特別是課後 的學習評量方面會是下階段所該補強的重點。

(2)創新延伸 (選填)

無

G. 授 權使 用

(1)授權與標示

☑遠距教學課程-無合授-不得改作-無講座-課綱完整標示遠距教學課程-有合授-可改作-搭配講座-課綱完整標示翻轉教學教材-無合授-不得改作-無講座-課綱完整標示翻轉教學教材-有合授-可改作-搭配講座-課綱完整標示其他:

(2)其他宣告事

預設授權期間: 單次授權學年度:1學年

授權範圍: 影片及測驗

H. 聯繫窗口	(1)聯盟或委託 單位	或委託 業務承辦人:真理大學教與學發展中心 彭羿菁 e-mail:au130005@o365.au.edu.tw	
	(2)開課教師資 料(選)	李中傑老師 真理大學 統計資訊與精算學系 助理教授 淡江大學物理博士	

E:在促進教師掌握開課學科領域的教學知識和教學經驗(pedagogical content knowledge, PCK)移轉。 F:在促進教師如何有效地結合科技工具、教學知識和學科知識進行教學,以提高學生學習成效的經驗移轉(即 Technological Pedagogical and Content Knowledge, TPACK)。

G,H:在促進擴大課程教材利用。如相同授課領域教師有引用或導入需求,能取得授權與標示資訊。